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Abstract
We introduce the task of Visual Dialog, which requires an
AI agent to hold a meaningful dialog with humans in natu-
ral, conversational language about visual content. Specifi-
cally, given an image, a dialog history, and a question about
the image, the agent has to ground the question in image,
infer context from history, and answer the question accu-
rately. Visual Dialog is disentangled enough from a specific
downstream task so as to serve as a general test of ma-
chine intelligence, while being grounded in vision enough
to allow objective evaluation of individual responses and
benchmark progress. We develop a novel two-person chat
data-collection protocol to curate a large-scale Visual Di-
alog dataset (VisDial). VisDial v0.9 has been released and
contains 1 dialog with 10 question-answer pairs on ⇠120k
images from COCO, with a total of ⇠1.2M dialog question-
answer pairs.
We introduce a family of neural encoder-decoder models for
Visual Dialog with 3 encoders – Late Fusion, Hierarchi-
cal Recurrent Encoder and Memory Network – and 2 de-
coders (generative and discriminative), which outperform a
number of sophisticated baselines. We propose a retrieval-
based evaluation protocol for Visual Dialog where the AI
agent is asked to sort a set of candidate answers and eval-
uated on metrics such as mean-reciprocal-rank of human
response. We quantify gap between machine and human
performance on the Visual Dialog task via human studies.
Putting it all together, we demonstrate the first ‘visual chat-
bot’! Our dataset, code, trained models and visual chatbot
are available on https://visualdialog.org.

1. Introduction

We are witnessing unprecedented advances in computer vi-
sion (CV) and artificial intelligence (AI) – from ‘low-level’
AI tasks such as image classification [20], scene recogni-

*Work done while KG and AS were interns at Virginia Tech.

Figure 1: We introduce a new AI task – Visual Dialog, where an AI
agent must hold a dialog with a human about visual content. We
introduce a large-scale dataset (VisDial), an evaluation protocol,
and novel encoder-decoder models for this task.

tion [63], object detection [34] – to ‘high-level’ AI tasks
such as learning to play Atari video games [42] and Go [55],
answering reading comprehension questions by understand-
ing short stories [21, 65], and even answering questions
about images [6, 39, 49, 71] and videos [57, 58]!
What lies next for AI? We believe that the next genera-
tion of visual intelligence systems will need to posses the
ability to hold a meaningful dialog with humans in natural
language about visual content. Applications include:
• Aiding visually impaired users in understanding their sur-

roundings [7] or social media content [66] (AI: ‘John just
uploaded a picture from his vacation in Hawaii’, Human:
‘Great, is he at the beach?’, AI: ‘No, on a mountain’).

• Aiding analysts in making decisions based on large quan-
tities of surveillance data (Human: ‘Did anyone enter this
room last week?’, AI: ‘Yes, 27 instances logged on cam-
era’, Human: ‘Were any of them carrying a black bag?’),
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Figure 2: Two example games in the dataset. After a se-
quence of five questions we are able to locate the object
(highlighted by a green mask).

guage descriptions of an image. Visual Question Answering
(VQA) [6] is another popular task that involves answering
single open-ended questions concerning an image. Closer
to our work, the ReferIt game [21] aims to generate a single
expression that refers to one object in the image.

On the other hand, there has been a renewed interest in
dialogue systems [31, 37], inspired by the success of data-
driven approaches in other areas of natural language pro-
cessing [11]. Traditionally, dialogue systems have been
built through heavy engineering and hand-crafted expert
knowledge, despite machine learning attempts for almost
two decades [25, 40]. One of the difficulties comes from
the lack of automatic evaluation as – contrary to machine
translation – there is no evaluation metric that correlates
well with human evaluation [27]. A promising alternative is
goal-directed dialogue tasks [31, 40, 44, 43] where agents
converse to pursue a goal rather than casually chit-chat. The
agent’s success rate in completing the task can then be used
as an automatic evaluation metric. Many tasks have recently
been introduced, including the bAbI tasks [44] for testing an
agent’s ability to answer questions about a short story, the
movie dialog dataset [12] to assess an agent’s capabilities
regarding personal movie recommendation and a Wizard-
of-Oz framework [43] to evaluate an agent’s performance
for assisting users in finding restaurants.

In this paper, we bring these two fields together and
propose a novel goal-directed task for multi-modal dia-
logue. The two-player game, called GuessWhat?!, extends
the ReferIt game [21] to a dialogue setting. To succeed, both
players must understand the relations between objects and
how they are expressed in natural language. From a ma-
chine learning point of view, the GuessWhat?! challenge
is the following: learn to acquire natural language by in-
teraction on a visual task. Previous attempts in that direc-
tion [2, 43] do not ground natural language to their imme-
diate environment; instead they rely on an external database
through which a conversational agent searches.

The key contribution of this paper is the introduction of
the GuessWhat?! dataset that contains 155,280 dialogues
composed of 831,889 question/answer pairs on 66,537 im-
ages extracted from the MS COCO dataset [26]. We define
three sub-tasks that are based on the GuessWhat?! dataset
and prototype deep learning baselines to establish their dif-
ficulty. The paper is organized as follows. First, we explain
the rules of the GuessWhat?! game in Sec. 2. Then, Sec. 3
describes how GuessWhat?! relates to previous work. In
Sec. 4.1 we highlight our design decisions in collecting the
dataset, while Sec. 4.2 analyses many aspects of the dataset.
Sec. 5 introduces the questioner and oracle tasks and their
baseline models. Finally, Sec. 6 provides a final discussion
of the GuessWhat?! game.

2. GuessWhat?! game
GuessWhat?! is a cooperative two-player game in which

both players see the picture of a rich visual scene with sev-
eral objects. One player – the oracle – is randomly assigned
an object (which could be a person) in the scene. This ob-
ject is not known by the other player – the questioner –
whose goal it is to locate the hidden object. To do so, the
questioner can ask a series of yes-no questions which are
answered by the oracle as shown in Fig 1 and 2. Note that
the questioner is not aware of the list of objects, they can
only see the whole picture. Once the questioner has gath-
ered enough evidence to locate the object, they notify the
oracle that they are ready to guess the object. We then re-
veal the list of objects, and if the questioner picks the right
object, we consider the game successful. Otherwise, the
game ends unsuccessfully. We also include a small penalty
for every question to encourage the questioner to ask in-
formative questions. Fig 8 and 9 in Appendix A display a
full game from the perspective of the oracle and questioner,
respectively.

The oracle role is a form of visual question answering
where the answers are limited to Yes, No and N/A (not ap-
plicable). The N/A option is included to respond even when
the question being asked is ambiguous or an answer simply
cannot be determined. For instance, one cannot answer the
question ”Is he wearing glasses?” if the face of the selected
person is not visible. The role of the questioner is much
harder. They need to generate questions that progressively
narrow down the list of possible objects. Ideally, they would
like to minimize the number of questions necessary to lo-
cate the object. The optimal policy for doing so involves a
binary search: eliminate half of the remaining objects with
each question. Natural language is often very effective at
grouping objects in an image scene. Such strategies depend
on the picture, but we distinguish the following types:

Spatial reasoning We group objects spatially within the
image scene. One may use absolute spatial informa-

[Das et al., 2017]

[De Vries et al., 2017] 

[Mostafazadeh et al., 2017]

Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 2094–2104,
October 25-29, 2014, Doha, Qatar. c�2014 Association for Computational Linguistics
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Abstract

Unlike traditional over-the-phone spoken
dialog systems (SDSs), modern dialog
systems tend to have visual rendering on
the device screen as an additional modal-
ity to communicate the system’s response
to the user. Visual display of the system’s
response not only changes human behav-
ior when interacting with devices, but also
creates new research areas in SDSs. On-
screen item identification and resolution
in utterances is one critical problem to
achieve a natural and accurate human-
machine communication. We pose the
problem as a classification task to cor-
rectly identify intended on-screen item(s)
from user utterances. Using syntactic, se-
mantic as well as context features from the
display screen, our model can resolve dif-
ferent types of referring expressions with
up to 90% accuracy. In the experiments we
also show that the proposed model is ro-
bust to domain and screen layout changes.

1 Introduction

Todays natural user interfaces (NUI) for applica-
tions running on smart devices, e.g, phones (SIRI,
Cortana, GoogleNow), consoles (Amazon FireTV,
XBOX), tablet, etc., can handle not only simple
spoken commands, but also natural conversational
utterances. Unlike traditional over-the-phone spo-
ken dialog systems (SDSs), user hears and sees the
system’s response displayed on the screen as an
additional modality. Having visual access to the
system’s response and results changes human be-
havior when interacting with the machine, creating
new and challenging problems in SDS.

[System]: How can i help you today ?
[User]: Find non-fiction books by Chomsky.
[System]: (Fetches the following books from database)

[User]: “show details for the oldest production” or
“details for the syntax book” or
“open the last one” or
“i want to see the one on linguistics” or
“bring me Jurafsky’s text book”

Table 1: A sample multi-turn dialog. A list of second turn
utterances referring to the last book (in bold) and a new search
query (highlighted) are shown.

Consider a sample dialog in Table 1 between a
user and a NUI in the books domain. After the sys-
tem displays results on the screen, the user may
choose one or more of the on-screen items with
natural language utterances as shown in Table 1.
Note that, there are multiple ways of referring to
the same item, (e.g. the last book)1. To achieve a
natural and accurate human to machine conversa-
tion, it is crucial to accurately identify and resolve
referring expressions in utterances. As important
as interpreting referring expressions (REs) is for
modern NUI designs, relatively few studies have
investigated withing the SDSs. Those that do fo-
cus on the impact of the input from multimodal
interfaces such as gesture for understanding (Bolt,
1980; Heck et al., 2013; Johnston et al., 2002),
touch for ASR error correction (Huggins-Daines
and Rudnicky, 2008), or cues from the screen
(Balchandran et al., 2008; Anastasiou et al., 2012).
Most of these systems are engineered for a specific

1An item could be anything from a list, e.g. restaurants,
games, contact list, organized in different lay-outs on the
screen.

2094

[Celikyilmaz et al., 2014] 
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Abstract
We introduce the task of Visual Dialog, which requires an
AI agent to hold a meaningful dialog with humans in natu-
ral, conversational language about visual content. Specifi-
cally, given an image, a dialog history, and a question about
the image, the agent has to ground the question in image,
infer context from history, and answer the question accu-
rately. Visual Dialog is disentangled enough from a specific
downstream task so as to serve as a general test of ma-
chine intelligence, while being grounded in vision enough
to allow objective evaluation of individual responses and
benchmark progress. We develop a novel two-person chat
data-collection protocol to curate a large-scale Visual Di-
alog dataset (VisDial). VisDial v0.9 has been released and
contains 1 dialog with 10 question-answer pairs on ⇠120k
images from COCO, with a total of ⇠1.2M dialog question-
answer pairs.
We introduce a family of neural encoder-decoder models for
Visual Dialog with 3 encoders – Late Fusion, Hierarchi-
cal Recurrent Encoder and Memory Network – and 2 de-
coders (generative and discriminative), which outperform a
number of sophisticated baselines. We propose a retrieval-
based evaluation protocol for Visual Dialog where the AI
agent is asked to sort a set of candidate answers and eval-
uated on metrics such as mean-reciprocal-rank of human
response. We quantify gap between machine and human
performance on the Visual Dialog task via human studies.
Putting it all together, we demonstrate the first ‘visual chat-
bot’! Our dataset, code, trained models and visual chatbot
are available on https://visualdialog.org.

1. Introduction

We are witnessing unprecedented advances in computer vi-
sion (CV) and artificial intelligence (AI) – from ‘low-level’
AI tasks such as image classification [20], scene recogni-

*Work done while KG and AS were interns at Virginia Tech.

Figure 1: We introduce a new AI task – Visual Dialog, where an AI
agent must hold a dialog with a human about visual content. We
introduce a large-scale dataset (VisDial), an evaluation protocol,
and novel encoder-decoder models for this task.

tion [63], object detection [34] – to ‘high-level’ AI tasks
such as learning to play Atari video games [42] and Go [55],
answering reading comprehension questions by understand-
ing short stories [21, 65], and even answering questions
about images [6, 39, 49, 71] and videos [57, 58]!
What lies next for AI? We believe that the next genera-
tion of visual intelligence systems will need to posses the
ability to hold a meaningful dialog with humans in natural
language about visual content. Applications include:
• Aiding visually impaired users in understanding their sur-

roundings [7] or social media content [66] (AI: ‘John just
uploaded a picture from his vacation in Hawaii’, Human:
‘Great, is he at the beach?’, AI: ‘No, on a mountain’).

• Aiding analysts in making decisions based on large quan-
tities of surveillance data (Human: ‘Did anyone enter this
room last week?’, AI: ‘Yes, 27 instances logged on cam-
era’, Human: ‘Were any of them carrying a black bag?’),
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Figure 2: Two example games in the dataset. After a se-
quence of five questions we are able to locate the object
(highlighted by a green mask).

guage descriptions of an image. Visual Question Answering
(VQA) [6] is another popular task that involves answering
single open-ended questions concerning an image. Closer
to our work, the ReferIt game [21] aims to generate a single
expression that refers to one object in the image.

On the other hand, there has been a renewed interest in
dialogue systems [31, 37], inspired by the success of data-
driven approaches in other areas of natural language pro-
cessing [11]. Traditionally, dialogue systems have been
built through heavy engineering and hand-crafted expert
knowledge, despite machine learning attempts for almost
two decades [25, 40]. One of the difficulties comes from
the lack of automatic evaluation as – contrary to machine
translation – there is no evaluation metric that correlates
well with human evaluation [27]. A promising alternative is
goal-directed dialogue tasks [31, 40, 44, 43] where agents
converse to pursue a goal rather than casually chit-chat. The
agent’s success rate in completing the task can then be used
as an automatic evaluation metric. Many tasks have recently
been introduced, including the bAbI tasks [44] for testing an
agent’s ability to answer questions about a short story, the
movie dialog dataset [12] to assess an agent’s capabilities
regarding personal movie recommendation and a Wizard-
of-Oz framework [43] to evaluate an agent’s performance
for assisting users in finding restaurants.

In this paper, we bring these two fields together and
propose a novel goal-directed task for multi-modal dia-
logue. The two-player game, called GuessWhat?!, extends
the ReferIt game [21] to a dialogue setting. To succeed, both
players must understand the relations between objects and
how they are expressed in natural language. From a ma-
chine learning point of view, the GuessWhat?! challenge
is the following: learn to acquire natural language by in-
teraction on a visual task. Previous attempts in that direc-
tion [2, 43] do not ground natural language to their imme-
diate environment; instead they rely on an external database
through which a conversational agent searches.

The key contribution of this paper is the introduction of
the GuessWhat?! dataset that contains 155,280 dialogues
composed of 831,889 question/answer pairs on 66,537 im-
ages extracted from the MS COCO dataset [26]. We define
three sub-tasks that are based on the GuessWhat?! dataset
and prototype deep learning baselines to establish their dif-
ficulty. The paper is organized as follows. First, we explain
the rules of the GuessWhat?! game in Sec. 2. Then, Sec. 3
describes how GuessWhat?! relates to previous work. In
Sec. 4.1 we highlight our design decisions in collecting the
dataset, while Sec. 4.2 analyses many aspects of the dataset.
Sec. 5 introduces the questioner and oracle tasks and their
baseline models. Finally, Sec. 6 provides a final discussion
of the GuessWhat?! game.

2. GuessWhat?! game
GuessWhat?! is a cooperative two-player game in which

both players see the picture of a rich visual scene with sev-
eral objects. One player – the oracle – is randomly assigned
an object (which could be a person) in the scene. This ob-
ject is not known by the other player – the questioner –
whose goal it is to locate the hidden object. To do so, the
questioner can ask a series of yes-no questions which are
answered by the oracle as shown in Fig 1 and 2. Note that
the questioner is not aware of the list of objects, they can
only see the whole picture. Once the questioner has gath-
ered enough evidence to locate the object, they notify the
oracle that they are ready to guess the object. We then re-
veal the list of objects, and if the questioner picks the right
object, we consider the game successful. Otherwise, the
game ends unsuccessfully. We also include a small penalty
for every question to encourage the questioner to ask in-
formative questions. Fig 8 and 9 in Appendix A display a
full game from the perspective of the oracle and questioner,
respectively.

The oracle role is a form of visual question answering
where the answers are limited to Yes, No and N/A (not ap-
plicable). The N/A option is included to respond even when
the question being asked is ambiguous or an answer simply
cannot be determined. For instance, one cannot answer the
question ”Is he wearing glasses?” if the face of the selected
person is not visible. The role of the questioner is much
harder. They need to generate questions that progressively
narrow down the list of possible objects. Ideally, they would
like to minimize the number of questions necessary to lo-
cate the object. The optimal policy for doing so involves a
binary search: eliminate half of the remaining objects with
each question. Natural language is often very effective at
grouping objects in an image scene. Such strategies depend
on the picture, but we distinguish the following types:

Spatial reasoning We group objects spatially within the
image scene. One may use absolute spatial informa-

[Das et al., 2017]

[De Vries et al., 2017] 

[Mostafazadeh et al., 2017]

Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 2094–2104,
October 25-29, 2014, Doha, Qatar. c�2014 Association for Computational Linguistics
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Abstract

Unlike traditional over-the-phone spoken
dialog systems (SDSs), modern dialog
systems tend to have visual rendering on
the device screen as an additional modal-
ity to communicate the system’s response
to the user. Visual display of the system’s
response not only changes human behav-
ior when interacting with devices, but also
creates new research areas in SDSs. On-
screen item identification and resolution
in utterances is one critical problem to
achieve a natural and accurate human-
machine communication. We pose the
problem as a classification task to cor-
rectly identify intended on-screen item(s)
from user utterances. Using syntactic, se-
mantic as well as context features from the
display screen, our model can resolve dif-
ferent types of referring expressions with
up to 90% accuracy. In the experiments we
also show that the proposed model is ro-
bust to domain and screen layout changes.

1 Introduction

Todays natural user interfaces (NUI) for applica-
tions running on smart devices, e.g, phones (SIRI,
Cortana, GoogleNow), consoles (Amazon FireTV,
XBOX), tablet, etc., can handle not only simple
spoken commands, but also natural conversational
utterances. Unlike traditional over-the-phone spo-
ken dialog systems (SDSs), user hears and sees the
system’s response displayed on the screen as an
additional modality. Having visual access to the
system’s response and results changes human be-
havior when interacting with the machine, creating
new and challenging problems in SDS.

[System]: How can i help you today ?
[User]: Find non-fiction books by Chomsky.
[System]: (Fetches the following books from database)

[User]: “show details for the oldest production” or
“details for the syntax book” or
“open the last one” or
“i want to see the one on linguistics” or
“bring me Jurafsky’s text book”

Table 1: A sample multi-turn dialog. A list of second turn
utterances referring to the last book (in bold) and a new search
query (highlighted) are shown.

Consider a sample dialog in Table 1 between a
user and a NUI in the books domain. After the sys-
tem displays results on the screen, the user may
choose one or more of the on-screen items with
natural language utterances as shown in Table 1.
Note that, there are multiple ways of referring to
the same item, (e.g. the last book)1. To achieve a
natural and accurate human to machine conversa-
tion, it is crucial to accurately identify and resolve
referring expressions in utterances. As important
as interpreting referring expressions (REs) is for
modern NUI designs, relatively few studies have
investigated withing the SDSs. Those that do fo-
cus on the impact of the input from multimodal
interfaces such as gesture for understanding (Bolt,
1980; Heck et al., 2013; Johnston et al., 2002),
touch for ASR error correction (Huggins-Daines
and Rudnicky, 2008), or cues from the screen
(Balchandran et al., 2008; Anastasiou et al., 2012).
Most of these systems are engineered for a specific

1An item could be anything from a list, e.g. restaurants,
games, contact list, organized in different lay-outs on the
screen.
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[Celikyilmaz et al., 2014] 
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Abstract

We present a new AI task – Embodied Question Answering
(EmbodiedQA) – where an agent is spawned at a random
location in a 3D environment and asked a question (‘What
color is the car?’). In order to answer, the agent must first in-
telligently navigate to explore the environment, gather nec-
essary visual information through first-person (egocentric)
vision, and then answer the question (‘orange’).
EmbodiedQA requires a range of AI skills – language un-
derstanding, visual recognition, active perception, goal-
driven navigation, commonsense reasoning, long-term
memory, and grounding language into actions. In this work,
we develop a dataset of questions and answers in House3D
environments [1], evaluation metrics, and a hierarchical
model trained with imitation and reinforcement learning.

1. Introduction

The embodiment hypothesis is the idea that intelligence
emerges in the interaction of an agent with an environ-
ment and as a result of sensorimotor activity.

Smith and Gasser [2]

Our long-term goal is to build intelligent agents that can
perceive their environment (through vision, audition, or
other sensors), communicate (i.e., hold a natural language
dialog grounded in the environment), and act (e.g. aid hu-
mans by executing API calls or commands in a virtual or
embodied environment). In addition to being a fundamen-
tal scientific goal in artificial intelligence (AI), even a small
advance towards such intelligent systems can fundamentally
change our lives – from assistive dialog agents for the vi-
sually impaired, to natural-language interaction with self-
driving cars, in-home robots, and personal assistants.
As a step towards goal-driven agents that can perceive, com-
municate, and execute actions, we present a new AI task
– Embodied Question Answering (EmbodiedQA) – along

‹Work partially done during an internship at Facebook AI Research.

Figure 1: Embodied Question Answering – EmbodiedQA– tasks
agents with navigating rich 3D environments in order to answer
questions. These agents must jointly learn language understand-
ing, visual reasoning, and goal-driven navigation to succeed.

with a dataset of questions in virtual environments, evalua-
tion metrics, and a deep reinforcement learning (RL) model.
Concretely, the EmbodiedQA task is illustrated in Fig. 1 –
an agent is spawned at a random location in an environment
(a house or building) and asked a question (e.g. ‘What color
is the car?’). The agent perceives its environment through
first-person egocentric vision and can perform a few atomic
actions (move-forward, turn, strafe, etc.). The goal of the
agent is to intelligently navigate the environment and gather
visual information necessary for answering the question.
EmbodiedQA is a challenging task that subsumes several
fundamental problems as sub-tasks. Clearly, the agent must
understand language (what is the question asking?) and
vision (what does a ‘car’ look like?), but it must also learn:

Active Perception: The agent may be spawned anywhere
in the environment and may not immediately ‘see’ the pix-
els containing the answer to the visual question (i.e. the
car may not be visible). Thus, the agent must move to suc-
ceed – controlling the pixels that it perceives. The agent
must learn to map its visual input to the correct actions
based on its perception of the world, the underlying phys-
ical constraints, and its understanding of the question.

[Das et al., 2018] 
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S1: what an offside trap 
OMEGALUL
 

S2: Lol that finish bro
 

S3: suprised you didn't 
do the extra pass
 

S4: @S10 a drunk bet? 
 

S5: @S11 thanks mate
 

S6: could have passed 
one more
 

S7: Pass that
 

S1: record now!
 

S8: !record 

S9: done a nother pass there

The task is to predict the response (bottom-
right) using the video context (left) and the 
chat context (top-right) 
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S1: what an offside trap 
OMEGALUL
 

S2: Lol that finish bro
 

S3: suprised you didn't 
do the extra pass
 

S4: @S10 a drunk bet? 
 

S5: @S11 thanks mate
 

S6: could have passed 
one more
 

S7: Pass that
 

S1: record now!
 

S8: !record 

S9: done a nother pass there

The task is to predict the response (bottom-
right) using the video context (left) and the 
chat context (top-right) 

Applications of 
Video-Grounded 

Dialogue

• Personal 
Assistants

• Intelligent tutors

• Human-robot 
Collaboration



Game-Based Video-Context Dialogue R. Pasunuru & M. Bansal

Twitch-FIFA Dataset Collection
• To extract triples (instances) of video context, chat context, and response, 

we divide the videos based on the fixed time frames
• 20-sec context windows to extract video clips and users utterances
• Chat utterances in the next 10-sec window are potential responses

• We select the response that has at least some good coherence and 
relevance with the chat context’s topic

12
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Filtering Process
• Discourage frequent responses
• we choose the first (earliest) response that has high similarity with some 

other utterance in this response window (using 0.5 BLEU threshold, based 
on manual inspection)
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Figure 2: Sample page of live broadcast of FIFA-18
game on twitch.tv with concurrent user chat.

dialogue models need to generate the next re-
sponse in the sequence of chats, conditioned both
on the raw video features as well as the pre-
vious textual chat history. Moreover, our new
dataset presents a many-speaker conversation set-
ting, similar to previous work on meeting un-
derstanding and Computer Supported Cooperative
Work (CSCW) (Janin et al., 2003; Waibel et al.,
2001; Schmidt and Bannon, 1992). In the live
video stream direction, Fu et al. (2017) and Ping
and Chen (2017) used real-time comments to pre-
dict the frame highlights in a video, and Barbieri
et al. (2017) presented emotes and troll prediction.

3 Twitch-FIFA Dataset

3.1 Dataset Collection and Processing

For our new video-context dialogue task, we used
the publicly accessible Twitch.tv live broadcast
platform, and collected videos of soccer (FIFA-
18) games along with the users’ live chat conver-
sations about the game. This dataset has videos in-
volving various realistic human actions and events
in a complex sports environment and hence serves
as a good testbed and first step towards multimodal
video-based dialogue data. An example is shown
in Fig. 1 (and an original screenshot example in
Fig. 2), where the users perform a complex ‘many-
speaker’, ‘multimodal’ dialogue. Overall, we col-
lected 49 FIFA-18 game videos along with their
users’ chat, and divided them into 33 videos for
training, 8 videos for validation, and 8 videos for
testing. Each such video is several hours long, pro-
viding a good amount of data (Table 2).

To extract triples (instances) of video context,
chat context, and response from this data, we di-
vide these videos based on the fixed time frames
instead of fixed number of utterances in order to
maintain conversation topic clusters (because of
the sparse nature of chat utterances count over
the time). First, we use 20-sec context windows
to extract the video clips and users utterances in

Relevance to Video+Chat
filtered response wins 34%
1st response wins 3%
Non-distinguishable 63% (56 both-good, 7 both-bad)

Table 1: Human evaluation of our dataset, comparing
our filtered responses versus the first response in the
window (for relevance w.r.t. video and chat contexts).

this time frame, and use it as our video and chat
contexts, resp. Next, the chat utterances in the
immediately-following 10-sec window (response
window) that do not overlap with the next in-
stance’s context window are considered as poten-
tial responses.1 Hence, there are only two in-
stances (triples) in a 60-sec long video, i.e., 20-sec
video+chat context window and 10-sec response
window, and there is no overlap between the in-
stances. Now, out of these potential responses, to
only allow the response that has at least some good
coherence and relevance with the chat context’s
topic, we choose the first (earliest) response that
has high similarity with some other utterance in
this response window (using 0.5 BLEU-4 thresh-
old, based on manual inspection).2

Human Quality Evaluation of Data Filtering
Process: To evaluate the quality of the responses
that result from our filtering process described
above, we performed an anonymous (randomly
shuffled w/o identity) human comparison between
the response selected by our filtering process vs.
the first response from the response window with-
out any filtering, based on relevance w.r.t. video
and chat context. Table 1 presents the results on
100 sample size, showing that humans in a blind-
test found 90% (34+56) of our filtered responses
as valid responses, verifying that our response se-
lection procedure is reasonable. Furthermore, out
of these 90% valid responses, we found that 55%
are chat-only relevant, 11% are video-only rele-
vant, and 24% are both video+chat relevant.

In order to make the above procedure safe and
to make the dataset more challenging, we also dis-
courage frequent responses (top-20 most-frequent

1We use non-overlapping windows because: (1) the ut-
terances are non-uniformly distributed in time and hence if
we have a shifting window, sometimes a particular data in-
stance/chunk becomes very sparse and contains almost zero
utterances; (2) we do not want overlap between response of
one window with the context of the next window, so as to
avoid the encoder already having seen the response (as part
of context) that the decoder needs to generate for the other
window.

2Based on intuition that if multiple speakers are saying the
same response in that 10-second window, then this response
should be more meaningful/relevant w.r.t. chat context.

Human evaluation of our dataset, comparing our filtered responses 
versus the first response in the window (for relevance w.r.t. video 
and chat contexts) 
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Statistics Train Val Test
#Videos 33 8 8
Total Hours 58.4 11.9 15.4
Final Filtered #Instances 10,510 2,153 2,780
Avg. Chat Context Length 69.0 63.5 71.2
Avg. Response Length 6.5 6.5 6.1

Table 2: Twitch-FIFA dataset’s chat statistics (lengths
are defined in terms of number of words).

generic utterances) unless no other response satis-
fies the similarity condition, hence suppressing the
frequent responses.3 If we couldn’t find any utter-
ance based on the multi-response matching pro-
cedure described above, then we just consider the
first utterance in the 10-second window as the re-
sponse.4 We also make sure that the chat context
window has at least 4 utterances, otherwise we
exclude that context window and also the corre-
sponding response window from the dataset. After
all this processing, our final resulting dataset con-
tains 10, 510 samples in training, 2, 153 samples
in validation, and 2, 780 samples in test.5

3.2 Dataset Analysis
Dataset Statistics Table 2 presents the full statis-
tics on train, validation, and test sets of our
Twitch-FIFA dataset, after the filtering process de-
scribed in Sec. 3.1. As shown, the average chat
context length in the dataset is around 68 words,
and the average response length is 6.3 words.
Chat Context Size Fig. 3 presents the study of
number of utterances in the chat context vs. the
number of such training samples. As we limit the
minimum number of utterances to 4, chat context
with less than 4 utterances is not present in the
dataset. From the Fig. 3, it is clear that as the num-
ber of utterances in the chat context increases, the
number of such training samples decrease.
Frequent Words Fig. 4 presents the top-20 fre-
quent words (excluding stop words) and their cor-
responding frequency in our Twitch-FIFA dataset.
Most of these frequent words are related to soccer
vocabulary. Also, some of these frequent words
are twitch emotes (e.g. ‘kappa’, ‘inceptionlove’).

3Note that this filtering suppresses the performance of
simple frequent-response baseline described in Sec. 4.1.

4Other preprocessing steps include: omit the utterances
in the response window which refer to a speaker name out
of the current chat context; remove non-representative utter-
ances, e.g., those with hyperlinks; replace (anonymize) all
the user identities mentioned in the utterances with a com-
mon tag (i.e., anonymizing due to similar intuitions from the
Q&A community (Hermann et al., 2015)).

5Note that this is substantially larger than or comparable
to most current video captioning datasets. We plan to further
extend our dataset based on diverse games and video types.

Figure 3: Distribution of #utterances in chat context
(w.r.t. the #training examples for each case).

Figure 4: Frequent words in our Twitch-FIFA dataset.

4 Models

Let v = {v1, v2, .., vm} be the video context
frames, u = {u1, u2, .., un} be the textual chat
(utterance) context tokens, and r = {r1, r2, .., rk}
be response tokens generated (or retrieved).

4.1 Baselines
Our simple non-trained baselines are Most-
Frequent-Response (re-rank the candidate re-
sponses based on their frequency in the training
set), Chat-Response-Cosine (re-rank the candidate
responses based on their similarity score w.r.t. the
chat context), and Nearest-Neighbor (find the K-
best similar chat contexts in the training set, take
their corresponding responses, and then re-rank
the candidate responses based on mean similar-
ity score w.r.t. this K-best response set). For
trained baselines, we use logistic regression and
Naive Bayes methods. We use the final state of a
Twitch-trained RNN Language Model to represent
the chat context and response. Please see supple-
mentary for full details.

4.2 Discriminative Models
4.2.1 Triple Encoder
For our simpler discriminative model, we use a
‘triple encoder’ to encode the video context, chat
context, and response (see Fig. 5), as an exten-
sion of the dual encoder model in Lowe et al.
(2015). The task here is to predict the given train-

Twitch-FIFA dataset’s chat statistics (lengths are defined in terms 
of number of words) 

• Anonymized user identities
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Distribution of #utterances in chat 
context (w.r.t. the #training examples 
for each case) 

Frequent words in our Twitch-FIFA 
dataset 
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Models

• Discriminative Models

• Generative Models
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Discriminative Model 

17

Our Triple Encoder discriminative model with bidirectional 
LSTM-RNN encoders for video, chat context, and response 

[Lowe et al., 2015]
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...... ......

response-to-video
 attention

chat-to-video
 attention

......

video-to-chat
 attention

response-to-chat
 attention

video-to-response
 attention

chat-to-response
 attention

Discriminative Model 

18

Our Tri-Directional Attention Flow (TriDAF) model with all pairwise 
modality attention modules, as well as self attention on video context, chat 
context, and response as inputs 

[Seo et al., 2017; Lin et al., 2017]
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Generative Model

19

chat-to-video
 attention

video-to-chat
 attention

Our BiDAF-Generative model with bidirectional attention flow 
between video context and chat context during response 
generation 

[Seo et al., 2017; Luong et al., 2015]
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Evaluation

• Retrieval-based recall@k scores
• Discriminative models: re-rank responses 
(9 negative, 1 positive)

• Generative models: re-rank based on log probability score of the 
generated response

• Phrase-matching metrics (Generative models)
• METEOR
• ROUGE

• Human Evaluation
20
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Negative Samples

• Negative samples do not come from the video corresponding to 
positive response

• Training:
• 3 random negative triples with only one modality being negative (for 

both discriminative and generative models)

• Testing/Validation:
• 9 random negative responses (for recall@k eval)

21
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Models r@1 r@2 r@5
BASELINES

Most-Frequent-Response 10.0 16.0 20.9
Naive Bayes 9.6 20.9 51.5
Logistic Regression 10.8 21.8 52.5
Nearest Neighbor 11.4 22.6 53.2
Chat-Response-Cosine 11.4 22.0 53.2

DISCRIMINATIVE MODEL
Dual Encoder (C) 17.1 30.3 61.9
Dual Encoder (V) 16.3 30.5 61.1
Triple Encoder (C+V) 18.1 33.6 68.5
TriDAF+Self Attn (C+V) 20.7 35.3 69.4

GENERATIVE MODEL
Seq2seq +Attn (C) 14.8 27.3 56.6
Seq2seq +Attn (V) 14.8 27.2 56.7
Seq2seq + Attn (C+V) 15.7 28.0 57.0
Seq2seq + Attn + BiDAF (C+V) 16.5 28.5 57.7

Table 3: Performance of our baselines, discriminative
models, and generative models for recall@k metrics on
our Twitch-FIFA test set. C and V represent chat and
video context, respectively.

in the order of the probability score each response
gets from the model. If the positive response is
within the top-k list, then the recall@k score is 1,
otherwise 0, following previous Ubuntu-dialogue
work (Lowe et al., 2015). For the generative mod-
els, we follow a similar approach, but the rerank-
ing score for a candidate response is based on
the log probability score given by the generative
models’ decoder for that response, following the
setup of previous visual-dialog work (Das et al.,
2017). In our experiments, we use recall@1,
recall@2, and recall@5 scores. For complete-
ness, we also report the phrase-matching metric
scores: METEOR (Denkowski and Lavie, 2014)
and ROUGE (Lin, 2004) for our generative mod-
els. We also present human evaluation.

Training Details For negative samples, during
training, for every positive triple (video, chat,
response) in the training set, we sample 3 ran-
dom negative triples. For validation/test, we sam-
ple 9 random negative responses elsewhere from
the validation/test set. Also, the negative sam-
ples don’t come from the video corresponding to
the positive response. More details of negative
samples and other training details (e.g., dimen-
sion/vocab sizes, visual feature details, validation-
based hyperparamater tuning and model selec-
tion), are discussed in the supplementary.

6 Results and Analysis

6.1 Human Evaluation of Dataset
First, the overall human quality evaluation of our
dataset (shown in Table 1) demonstrates that it

contains 90% responses relevant to video and/or
chat context. Next, we also do a blind hu-
man study on the recall-based setup (on a set
of 100 samples from the validation set), where
we anonymize the positive response by randomly
mixing it with 9 tricky negative responses in the
retrieval list, and ask the user to select the most
relevant response for the given video and/or chat
context. We found that human performance on
this task is around 55% recall@1, demonstrating
that this 10-way-discriminative recall-based task
setup is reasonably challenging for humans,7 but
also that there is a lot of scope for future model
improvements because the chance baseline is only
10% and the best-performing model so far (see
Sec. 6.3) achieves only 22% recall@1 (on dev set),
and hence there is a large 33% gap.

6.2 Baseline Results
Table 3 displays all our primary results. We
first discuss results of our simple non-trained and
trained baselines (see Sec. 4.1). The ‘Most-
Frequent-Response’ baseline, which just ranks the
10-sized response retrieval list based on their fre-
quency in the training data, gets only around
10% recall@1.8 Our other non-trained baselines:
‘Chat-Response-Cosine’ and ‘Nearest Neighbor’,
which ranks the candidate responses based on
(Twitch-trained RNN encoder’s vector) cosine
similarity with chat-context and K-best training
contexts’ response vectors, respectively, achieves
slightly better scores. We also show that our sim-
ple trained baselines (logistic regression and near-
est neighbor) also achieve relatively low scores,
indicating that a simple, shallow model will not
work on this challenging dataset.

6.3 Discriminative Model Results
Next, we present the recall@k retrieval perfor-
mance of our various discriminative models in Ta-

7This relatively low human recall@1 performance is be-
cause this is a challenging, 10-way-discriminative evaluation,
i.e., the choice comes w.r.t. 9 tricky negative examples along
with just 1 positive example (hence chance-baseline is only
10%). Note that these negative examples are an artifact of
specifically recall-based evaluation only, and will not affect
the more important real-world task of response generation
(for which our dataset’s response quality is 90%, as shown
in Table 1). Moreover, our dataset filtering (see Sec. 3.1) also
‘suppresses’ simple baselines and makes the task even harder.

8Note that the performance of this baseline is worse than
the random choice baseline (recall@1:10%, recall@2:20%,
recall@5:50%) because our dataset filtering process already
suppresses frequent responses (see Sec. 3.1), in order to pro-
vide a challenging dataset for the community.

Performance of our baselines, discriminative models, and 
generative models for recall@k metrics on our Twitch-FIFA test 
set. C and V represent chat and video context, respectively. 
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Models r@1 r@2 r@5
BASELINES

Most-Frequent-Response 10.0 16.0 20.9
Naive Bayes 9.6 20.9 51.5
Logistic Regression 10.8 21.8 52.5
Nearest Neighbor 11.4 22.6 53.2
Chat-Response-Cosine 11.4 22.0 53.2

DISCRIMINATIVE MODEL
Dual Encoder (C) 17.1 30.3 61.9
Dual Encoder (V) 16.3 30.5 61.1
Triple Encoder (C+V) 18.1 33.6 68.5
TriDAF+Self Attn (C+V) 20.7 35.3 69.4

GENERATIVE MODEL
Seq2seq +Attn (C) 14.8 27.3 56.6
Seq2seq +Attn (V) 14.8 27.2 56.7
Seq2seq + Attn (C+V) 15.7 28.0 57.0
Seq2seq + Attn + BiDAF (C+V) 16.5 28.5 57.7

Table 3: Performance of our baselines, discriminative
models, and generative models for recall@k metrics on
our Twitch-FIFA test set. C and V represent chat and
video context, respectively.

in the order of the probability score each response
gets from the model. If the positive response is
within the top-k list, then the recall@k score is 1,
otherwise 0, following previous Ubuntu-dialogue
work (Lowe et al., 2015). For the generative mod-
els, we follow a similar approach, but the rerank-
ing score for a candidate response is based on
the log probability score given by the generative
models’ decoder for that response, following the
setup of previous visual-dialog work (Das et al.,
2017). In our experiments, we use recall@1,
recall@2, and recall@5 scores. For complete-
ness, we also report the phrase-matching metric
scores: METEOR (Denkowski and Lavie, 2014)
and ROUGE (Lin, 2004) for our generative mod-
els. We also present human evaluation.

Training Details For negative samples, during
training, for every positive triple (video, chat,
response) in the training set, we sample 3 ran-
dom negative triples. For validation/test, we sam-
ple 9 random negative responses elsewhere from
the validation/test set. Also, the negative sam-
ples don’t come from the video corresponding to
the positive response. More details of negative
samples and other training details (e.g., dimen-
sion/vocab sizes, visual feature details, validation-
based hyperparamater tuning and model selec-
tion), are discussed in the supplementary.

6 Results and Analysis

6.1 Human Evaluation of Dataset
First, the overall human quality evaluation of our
dataset (shown in Table 1) demonstrates that it

contains 90% responses relevant to video and/or
chat context. Next, we also do a blind hu-
man study on the recall-based setup (on a set
of 100 samples from the validation set), where
we anonymize the positive response by randomly
mixing it with 9 tricky negative responses in the
retrieval list, and ask the user to select the most
relevant response for the given video and/or chat
context. We found that human performance on
this task is around 55% recall@1, demonstrating
that this 10-way-discriminative recall-based task
setup is reasonably challenging for humans,7 but
also that there is a lot of scope for future model
improvements because the chance baseline is only
10% and the best-performing model so far (see
Sec. 6.3) achieves only 22% recall@1 (on dev set),
and hence there is a large 33% gap.

6.2 Baseline Results
Table 3 displays all our primary results. We
first discuss results of our simple non-trained and
trained baselines (see Sec. 4.1). The ‘Most-
Frequent-Response’ baseline, which just ranks the
10-sized response retrieval list based on their fre-
quency in the training data, gets only around
10% recall@1.8 Our other non-trained baselines:
‘Chat-Response-Cosine’ and ‘Nearest Neighbor’,
which ranks the candidate responses based on
(Twitch-trained RNN encoder’s vector) cosine
similarity with chat-context and K-best training
contexts’ response vectors, respectively, achieves
slightly better scores. We also show that our sim-
ple trained baselines (logistic regression and near-
est neighbor) also achieve relatively low scores,
indicating that a simple, shallow model will not
work on this challenging dataset.

6.3 Discriminative Model Results
Next, we present the recall@k retrieval perfor-
mance of our various discriminative models in Ta-

7This relatively low human recall@1 performance is be-
cause this is a challenging, 10-way-discriminative evaluation,
i.e., the choice comes w.r.t. 9 tricky negative examples along
with just 1 positive example (hence chance-baseline is only
10%). Note that these negative examples are an artifact of
specifically recall-based evaluation only, and will not affect
the more important real-world task of response generation
(for which our dataset’s response quality is 90%, as shown
in Table 1). Moreover, our dataset filtering (see Sec. 3.1) also
‘suppresses’ simple baselines and makes the task even harder.

8Note that the performance of this baseline is worse than
the random choice baseline (recall@1:10%, recall@2:20%,
recall@5:50%) because our dataset filtering process already
suppresses frequent responses (see Sec. 3.1), in order to pro-
vide a challenging dataset for the community.

Performance of our baselines, discriminative models, and 
generative models for recall@k metrics on our Twitch-FIFA test 
set. C and V represent chat and video context, respectively. 
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Models r@1 r@2 r@5
BASELINES

Most-Frequent-Response 10.0 16.0 20.9
Naive Bayes 9.6 20.9 51.5
Logistic Regression 10.8 21.8 52.5
Nearest Neighbor 11.4 22.6 53.2
Chat-Response-Cosine 11.4 22.0 53.2

DISCRIMINATIVE MODEL
Dual Encoder (C) 17.1 30.3 61.9
Dual Encoder (V) 16.3 30.5 61.1
Triple Encoder (C+V) 18.1 33.6 68.5
TriDAF+Self Attn (C+V) 20.7 35.3 69.4

GENERATIVE MODEL
Seq2seq +Attn (C) 14.8 27.3 56.6
Seq2seq +Attn (V) 14.8 27.2 56.7
Seq2seq + Attn (C+V) 15.7 28.0 57.0
Seq2seq + Attn + BiDAF (C+V) 16.5 28.5 57.7

Table 3: Performance of our baselines, discriminative
models, and generative models for recall@k metrics on
our Twitch-FIFA test set. C and V represent chat and
video context, respectively.

in the order of the probability score each response
gets from the model. If the positive response is
within the top-k list, then the recall@k score is 1,
otherwise 0, following previous Ubuntu-dialogue
work (Lowe et al., 2015). For the generative mod-
els, we follow a similar approach, but the rerank-
ing score for a candidate response is based on
the log probability score given by the generative
models’ decoder for that response, following the
setup of previous visual-dialog work (Das et al.,
2017). In our experiments, we use recall@1,
recall@2, and recall@5 scores. For complete-
ness, we also report the phrase-matching metric
scores: METEOR (Denkowski and Lavie, 2014)
and ROUGE (Lin, 2004) for our generative mod-
els. We also present human evaluation.

Training Details For negative samples, during
training, for every positive triple (video, chat,
response) in the training set, we sample 3 ran-
dom negative triples. For validation/test, we sam-
ple 9 random negative responses elsewhere from
the validation/test set. Also, the negative sam-
ples don’t come from the video corresponding to
the positive response. More details of negative
samples and other training details (e.g., dimen-
sion/vocab sizes, visual feature details, validation-
based hyperparamater tuning and model selec-
tion), are discussed in the supplementary.

6 Results and Analysis

6.1 Human Evaluation of Dataset
First, the overall human quality evaluation of our
dataset (shown in Table 1) demonstrates that it

contains 90% responses relevant to video and/or
chat context. Next, we also do a blind hu-
man study on the recall-based setup (on a set
of 100 samples from the validation set), where
we anonymize the positive response by randomly
mixing it with 9 tricky negative responses in the
retrieval list, and ask the user to select the most
relevant response for the given video and/or chat
context. We found that human performance on
this task is around 55% recall@1, demonstrating
that this 10-way-discriminative recall-based task
setup is reasonably challenging for humans,7 but
also that there is a lot of scope for future model
improvements because the chance baseline is only
10% and the best-performing model so far (see
Sec. 6.3) achieves only 22% recall@1 (on dev set),
and hence there is a large 33% gap.

6.2 Baseline Results
Table 3 displays all our primary results. We
first discuss results of our simple non-trained and
trained baselines (see Sec. 4.1). The ‘Most-
Frequent-Response’ baseline, which just ranks the
10-sized response retrieval list based on their fre-
quency in the training data, gets only around
10% recall@1.8 Our other non-trained baselines:
‘Chat-Response-Cosine’ and ‘Nearest Neighbor’,
which ranks the candidate responses based on
(Twitch-trained RNN encoder’s vector) cosine
similarity with chat-context and K-best training
contexts’ response vectors, respectively, achieves
slightly better scores. We also show that our sim-
ple trained baselines (logistic regression and near-
est neighbor) also achieve relatively low scores,
indicating that a simple, shallow model will not
work on this challenging dataset.

6.3 Discriminative Model Results
Next, we present the recall@k retrieval perfor-
mance of our various discriminative models in Ta-

7This relatively low human recall@1 performance is be-
cause this is a challenging, 10-way-discriminative evaluation,
i.e., the choice comes w.r.t. 9 tricky negative examples along
with just 1 positive example (hence chance-baseline is only
10%). Note that these negative examples are an artifact of
specifically recall-based evaluation only, and will not affect
the more important real-world task of response generation
(for which our dataset’s response quality is 90%, as shown
in Table 1). Moreover, our dataset filtering (see Sec. 3.1) also
‘suppresses’ simple baselines and makes the task even harder.

8Note that the performance of this baseline is worse than
the random choice baseline (recall@1:10%, recall@2:20%,
recall@5:50%) because our dataset filtering process already
suppresses frequent responses (see Sec. 3.1), in order to pro-
vide a challenging dataset for the community.

Performance of our baselines, discriminative models, and 
generative models for recall@k metrics on our Twitch-FIFA test 
set. C and V represent chat and video context, respectively. 
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Performance of our generative models on phrase matching metrics

Models METEOR ROUGE-L
MULTIPLE REFERENCES

Seq2seq + Atten. (C) 2.59 8.44
Seq2seq + Atten. (V) 2.66 8.34
Seq2seq + Atten. (C+V) ⌦ 3.03 8.84
⌦ + BiDAF (C+V) 3.70 9.82

Table 4: Performance of our generative models on
phrase matching metrics.

Models Relevance
Seq2seq + Atten. (C+V) wins 41.0 %
BiDAF wins 34.0 %
Non-distinguishable 25.0 %

Table 5: Human evaluation comparing the baseline and
BiDAF generative models.

ble 3: dual encoder (chat context only), dual en-
coder (video context only), triple encoder, and
TriDAF model with self-attention. Our dual en-
coder models are significantly better than random
choice and all our simple baselines above, and
further show that they have complementary in-
formation because using both of them together
(in ‘Triple Encoder’) improves the overall perfor-
mance of the model. Finally, we show that our
novel TriDAF model with self-attention performs
significantly better than the triple encoder model.9

6.4 Generative Model Results
Next, we evaluate the performance of our gener-
ative models with both retrieval-based recall@k
scores and phrase matching-based metrics as dis-
cussed in Sec. 5 (as well as human evaluation).
We first discuss the retrieval-based recall@k re-
sults in Table 3. Starting with a simple sequence-
to-sequence attention model with video only, chat
only, and both video and chat encoders, the re-
call@k scores are better than all the simple base-
lines. Moreover, using both video+chat context is
again better than using only one context modal-
ity. Finally, we show that the addition of the bidi-
rectional attention flow mechanism improves the
performance in all recall@k scores.10 Note that
generative model scores are lower than the dis-
criminative models on retrieval recall@k metric,
which is expected (see discussion in previous vi-
sual dialogue work (Das et al., 2017)), because
discriminative models can tune to the biases in the
response candidate options, but generative mod-
els are more useful for real-world tasks such as

9Statistical significance of p < 0.01 for recall@1, based
on the bootstrap test (Noreen, 1989; Efron and Tibshirani,
1994) with 100K samples.

10Stat. signif. p < 0.05 for recall@1 w.r.t. Seq2seq+Atten
(video+chat); p < 0.01 w.r.t. chat- and video-only models.

Models recall@1 recall@2 recall@5
1 neg. 18.21 32.19 64.05
3 neg. 22.20 35.90 68.09

Table 6: Ablation (dev) of one vs. three negative exam-
ples for TriDAF self-attention discriminative model.

generation of novel responses word-by-word from
scratch in Siri/Alexa/Cortana style applications
(whereas discriminative models can only rank the
pre-given list of responses).

We also evaluate our generative models with
phrase-level matching metrics: METEOR and
ROUGE-L, as shown in Table 4. Again, our
BiDAF model is stat. significantly better than non-
BiDAF model on both METEOR (p < 0.01) and
ROUGE-L (p < 0.02) metrics. Since dialogue
systems can have several diverse, non-overlapping
valid responses, we consider a multi-reference
setup where all the utterances in the 10-sec re-
sponse window are treated as valid responses.11

6.5 Human Evaluation of Models
Finally, we also perform human evaluation to
compare our top two generative models, i.e., the
video+chat seq2seq with attention and its exten-
sion with BiDAF (Sec. 4.3), based on a 100-sized
sample. We take the generated response from both
these models, and randomly shuffle these pairs to
anonymize model identity. We then ask two an-
notators (for 50 task instances each) to score the
responses of these two models based on relevance.
Note that the human evaluators were familiar with
Twitch FIFA-18 video games and also the Twitch’s
unique set of chat mannerisms and emotes. As
shown in Table 5, our BiDAF based generative
model performs better than the non-BiDAF one,
which is already quite a strong video+chat encoder
model with attention.

7 Ablations and Analysis

7.1 Negative Training Pairs
We also compare the effect of different negative
training triples that we discussed in Sec. 5. Ta-
ble 6 shows the comparison between one negative

11Liu et al. (2016b) discussed that BLEU and most phrase
matching metrics are not good for evaluating dialogue sys-
tems. Also, generative models have very low phrase-
matching metric scores because the generated response can
be valid but still very different from the ground truth ref-
erence (Lowe et al., 2015; Liu et al., 2016b; Li et al.,
2016). We present results for the relatively better metrics like
paraphrase-enabled METEOR for completeness, but still fo-
cus on retrieval recall@k and human evaluation.
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Human evaluation (two annotators with 50 task instances each) comparing the 
baseline and BiDAF generative models 

Models METEOR ROUGE-L
MULTIPLE REFERENCES

Seq2seq + Atten. (C) 2.59 8.44
Seq2seq + Atten. (V) 2.66 8.34
Seq2seq + Atten. (C+V) ⌦ 3.03 8.84
⌦ + BiDAF (C+V) 3.70 9.82

Table 4: Performance of our generative models on
phrase matching metrics.

Models Relevance
BiDAF wins 41.0 %
Seq2seq + Atten. (C+V) wins 34.0 %
Non-distinguishable 25.0 %

Table 5: Human evaluation comparing the baseline and
BiDAF generative models.

ble 3: dual encoder (chat context only), dual en-
coder (video context only), triple encoder, and
TriDAF model with self-attention. Our dual en-
coder models are significantly better than random
choice and all our simple baselines above, and
further show that they have complementary in-
formation because using both of them together
(in ‘Triple Encoder’) improves the overall perfor-
mance of the model. Finally, we show that our
novel TriDAF model with self-attention performs
significantly better than the triple encoder model.9

6.4 Generative Model Results
Next, we evaluate the performance of our gener-
ative models with both retrieval-based recall@k
scores and phrase matching-based metrics as dis-
cussed in Sec. 5 (as well as human evaluation).
We first discuss the retrieval-based recall@k re-
sults in Table 3. Starting with a simple sequence-
to-sequence attention model with video only, chat
only, and both video and chat encoders, the re-
call@k scores are better than all the simple base-
lines. Moreover, using both video+chat context is
again better than using only one context modal-
ity. Finally, we show that the addition of the bidi-
rectional attention flow mechanism improves the
performance in all recall@k scores.10 Note that
generative model scores are lower than the dis-
criminative models on retrieval recall@k metric,
which is expected (see discussion in previous vi-
sual dialogue work (Das et al., 2017)), because
discriminative models can tune to the biases in the
response candidate options, but generative mod-
els are more useful for real-world tasks such as

9Statistical significance of p < 0.01 for recall@1, based
on the bootstrap test (Noreen, 1989; Efron and Tibshirani,
1994) with 100K samples.

10Stat. signif. p < 0.05 for recall@1 w.r.t. Seq2seq+Atten
(video+chat); p < 0.01 w.r.t. chat- and video-only models.

Models recall@1 recall@2 recall@5
1 neg. 18.21 32.19 64.05
3 neg. 22.20 35.90 68.09

Table 6: Ablation (dev) of one vs. three negative exam-
ples for TriDAF self-attention discriminative model.

generation of novel responses word-by-word from
scratch in Siri/Alexa/Cortana style applications
(whereas discriminative models can only rank the
pre-given list of responses).

We also evaluate our generative models with
phrase-level matching metrics: METEOR and
ROUGE-L, as shown in Table 4. Again, our
BiDAF model is stat. significantly better than non-
BiDAF model on both METEOR (p < 0.01) and
ROUGE-L (p < 0.02) metrics. Since dialogue
systems can have several diverse, non-overlapping
valid responses, we consider a multi-reference
setup where all the utterances in the 10-sec re-
sponse window are treated as valid responses.11

6.5 Human Evaluation of Models
Finally, we also perform human evaluation to
compare our top two generative models, i.e., the
video+chat seq2seq with attention and its exten-
sion with BiDAF (Sec. 4.3), based on a 100-sized
sample. We take the generated response from both
these models, and randomly shuffle these pairs to
anonymize model identity. We then ask two an-
notators (for 50 task instances each) to score the
responses of these two models based on relevance.
Note that the human evaluators were familiar with
Twitch FIFA-18 video games and also the Twitch’s
unique set of chat mannerisms and emotes. As
shown in Table 5, our BiDAF based generative
model performs better than the non-BiDAF one,
which is already quite a strong video+chat encoder
model with attention.

7 Ablations and Analysis

7.1 Negative Training Pairs
We also compare the effect of different negative
training triples that we discussed in Sec. 5. Ta-
ble 6 shows the comparison between one negative

11Liu et al. (2016b) discussed that BLEU and most phrase
matching metrics are not good for evaluating dialogue sys-
tems. Also, generative models have very low phrase-
matching metric scores because the generated response can
be valid but still very different from the ground truth ref-
erence (Lowe et al., 2015; Liu et al., 2016b; Li et al.,
2016). We present results for the relatively better metrics like
paraphrase-enabled METEOR for completeness, but still fo-
cus on retrieval recall@k and human evaluation.
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Models METEOR ROUGE-L
MULTIPLE REFERENCES

Seq2seq + Atten. (C) 2.59 8.44
Seq2seq + Atten. (V) 2.66 8.34
Seq2seq + Atten. (C+V) ⌦ 3.03 8.84
⌦ + BiDAF (C+V) 3.70 9.82

Table 4: Performance of our generative models on
phrase matching metrics.

Models Relevance
Seq2seq + Atten. (C+V) wins 41.0 %
BiDAF wins 34.0 %
Non-distinguishable 25.0 %

Table 5: Human evaluation comparing the baseline and
BiDAF generative models.

ble 3: dual encoder (chat context only), dual en-
coder (video context only), triple encoder, and
TriDAF model with self-attention. Our dual en-
coder models are significantly better than random
choice and all our simple baselines above, and
further show that they have complementary in-
formation because using both of them together
(in ‘Triple Encoder’) improves the overall perfor-
mance of the model. Finally, we show that our
novel TriDAF model with self-attention performs
significantly better than the triple encoder model.9

6.4 Generative Model Results
Next, we evaluate the performance of our gener-
ative models with both retrieval-based recall@k
scores and phrase matching-based metrics as dis-
cussed in Sec. 5 (as well as human evaluation).
We first discuss the retrieval-based recall@k re-
sults in Table 3. Starting with a simple sequence-
to-sequence attention model with video only, chat
only, and both video and chat encoders, the re-
call@k scores are better than all the simple base-
lines. Moreover, using both video+chat context is
again better than using only one context modal-
ity. Finally, we show that the addition of the bidi-
rectional attention flow mechanism improves the
performance in all recall@k scores.10 Note that
generative model scores are lower than the dis-
criminative models on retrieval recall@k metric,
which is expected (see discussion in previous vi-
sual dialogue work (Das et al., 2017)), because
discriminative models can tune to the biases in the
response candidate options, but generative mod-
els are more useful for real-world tasks such as

9Statistical significance of p < 0.01 for recall@1, based
on the bootstrap test (Noreen, 1989; Efron and Tibshirani,
1994) with 100K samples.

10Stat. signif. p < 0.05 for recall@1 w.r.t. Seq2seq+Atten
(video+chat); p < 0.01 w.r.t. chat- and video-only models.

Models recall@1 recall@2 recall@5
1 neg. 18.21 32.19 64.05
3 neg. 22.20 35.90 68.09

Table 6: Ablation (dev) of one vs. three negative exam-
ples for TriDAF self-attention discriminative model.

generation of novel responses word-by-word from
scratch in Siri/Alexa/Cortana style applications
(whereas discriminative models can only rank the
pre-given list of responses).

We also evaluate our generative models with
phrase-level matching metrics: METEOR and
ROUGE-L, as shown in Table 4. Again, our
BiDAF model is stat. significantly better than non-
BiDAF model on both METEOR (p < 0.01) and
ROUGE-L (p < 0.02) metrics. Since dialogue
systems can have several diverse, non-overlapping
valid responses, we consider a multi-reference
setup where all the utterances in the 10-sec re-
sponse window are treated as valid responses.11

6.5 Human Evaluation of Models
Finally, we also perform human evaluation to
compare our top two generative models, i.e., the
video+chat seq2seq with attention and its exten-
sion with BiDAF (Sec. 4.3), based on a 100-sized
sample. We take the generated response from both
these models, and randomly shuffle these pairs to
anonymize model identity. We then ask two an-
notators (for 50 task instances each) to score the
responses of these two models based on relevance.
Note that the human evaluators were familiar with
Twitch FIFA-18 video games and also the Twitch’s
unique set of chat mannerisms and emotes. As
shown in Table 5, our BiDAF based generative
model performs better than the non-BiDAF one,
which is already quite a strong video+chat encoder
model with attention.

7 Ablations and Analysis

7.1 Negative Training Pairs
We also compare the effect of different negative
training triples that we discussed in Sec. 5. Ta-
ble 6 shows the comparison between one negative

11Liu et al. (2016b) discussed that BLEU and most phrase
matching metrics are not good for evaluating dialogue sys-
tems. Also, generative models have very low phrase-
matching metric scores because the generated response can
be valid but still very different from the ground truth ref-
erence (Lowe et al., 2015; Liu et al., 2016b; Li et al.,
2016). We present results for the relatively better metrics like
paraphrase-enabled METEOR for completeness, but still fo-
cus on retrieval recall@k and human evaluation.

Ablation (dev) of one vs. three negative examples for TriDAF self-attention discriminative model 
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Ablation of classification vs. max-margin loss on our TriDAF discriminative model (on dev) 

Figure 8: Output retrieval (left) and generative (right) examples from TriDAF and BiDAF models, resp.

Figure 9: Attention visualization: generated word ‘goal’ in response is intuitively aligning to goal-related video
frames (top-3-weight frames highlighted) and context words (top-10-weight words highlighted).

training triple (with just a negative response) vs.
three negative training triples (one with negative
video context, one with negative chat context, and
another with negative response), showing that us-
ing the 3-negative examples setup is substantially
better.

7.2 Discriminative Loss Functions
Table 7 shows the performance comparison be-
tween the classification loss and max-margin loss
on our TriDAF with self-attention discriminative
model (Sec. 4.2.2). We observe that max-margin
loss performs better than the classification loss,
which is intuitive because max-margin loss tries to
differentiate between positive and negative train-
ing example triples.

Models recall@1 recall@2 recall@5
Classification loss 19.32 33.72 66.60
Max-margin loss 22.20 35.90 68.09

Table 7: Ablation of classification vs. max-margin loss
on our TriDAF discriminative model (on dev set).

7.3 Generative Loss Functions
For our best generative model (BiDAF), Table 8
shows that using a joint loss of cross-entropy
and max-margin is better than just using only
cross-entropy loss optimization (Sec. 4.3.1). Max-
margin loss provides knowledge about the nega-
tive samples for the generative model, hence im-
proves the retrieval-based recall@k scores.

7.4 Attention Visualization and Examples
Finally, we show some interesting output exam-
ples from both our discriminative and generative
models as shown in Fig. 8. Additionally, Fig. 9

Models recall@1 recall@2 recall@5
Cross-entropy (XE) 13.12 23.45 54.78
XE+Max-margin 15.61 27.39 57.02

Table 8: Ablation of cross-entropy loss vs. cross-
entropy+maxmargin loss for our BiDAF-based gener-
ative model (on dev set).

visualizes that our models can learn some cor-
rect attention alignments from the generated out-
put response word to the appropriate (goal-related)
video frames as well as chat context words.

8 Conclusion
We presented a new game-chat based video-
context, many-speaker dialogue task and dataset.
We also presented several baselines and state-of-
the-art discriminative and generative models on
this task. We hope that this testbed will be a
good starting point to encourage future work on
the challenging video-context dialogue paradigm.
In future work, we plan to investigate the effects of
multiple users, i.e., the multi-party aspect of this
dataset. We also plan to explore advanced video
features such as activity recognition, person iden-
tification, etc.
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training triple (with just a negative response) vs.
three negative training triples (one with negative
video context, one with negative chat context, and
another with negative response), showing that us-
ing the 3-negative examples setup is substantially
better.

7.2 Discriminative Loss Functions
Table 7 shows the performance comparison be-
tween the classification loss and max-margin loss
on our TriDAF with self-attention discriminative
model (Sec. 4.2.2). We observe that max-margin
loss performs better than the classification loss,
which is intuitive because max-margin loss tries to
differentiate between positive and negative train-
ing example triples.

Models recall@1 recall@2 recall@5
Classification loss 19.32 33.72 66.60
Max-margin loss 22.20 35.90 68.09

Table 7: Ablation of classification vs. max-margin loss
on our TriDAF discriminative model (on dev set).

7.3 Generative Loss Functions
For our best generative model (BiDAF), Table 8
shows that using a joint loss of cross-entropy
and max-margin is better than just using only
cross-entropy loss optimization (Sec. 4.3.1). Max-
margin loss provides knowledge about the nega-
tive samples for the generative model, hence im-
proves the retrieval-based recall@k scores.

7.4 Attention Visualization and Examples
Finally, we show some interesting output exam-
ples from both our discriminative and generative
models as shown in Fig. 8. Additionally, Fig. 9

Models recall@1 recall@2 recall@5
Cross-entropy (XE) 13.12 23.45 54.78
XE+Max-margin 15.61 27.39 57.02

Table 8: Ablation of cross-entropy loss vs. cross-
entropy+maxmargin loss for our BiDAF-based gener-
ative model (on dev set).

visualizes that our models can learn some cor-
rect attention alignments from the generated out-
put response word to the appropriate (goal-related)
video frames as well as chat context words.

8 Conclusion
We presented a new game-chat based video-
context, many-speaker dialogue task and dataset.
We also presented several baselines and state-of-
the-art discriminative and generative models on
this task. We hope that this testbed will be a
good starting point to encourage future work on
the challenging video-context dialogue paradigm.
In future work, we plan to investigate the effects of
multiple users, i.e., the multi-party aspect of this
dataset. We also plan to explore advanced video
features such as activity recognition, person iden-
tification, etc.
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bloodtrail bloodtrail bloodtrail bloodtrail bloodtrail || 
yoooo || kappapride || xxuxx skillzzzz , favourite player
you have used this year ? || pl3ad aa9love || are you 
playin with ksi ? ? kappa xxuxx || bought okocha cuz of 
you ant . first game 2 goals 3 assists ! game changer
thank you m8 || play || ! pause || resume || twerkchoke 
twerkchoke twerkchoke || lul

1) good pass jebaited

2) shawn mendez kreygasm 
kreygasm

3) can say that i am american

4) ! camera

5) can you notice me

6) do you have a main squad

7) otw nelson for 47k imma buy 
right now on xbox

8) do *

9) inceptionderp inceptionlove

10) bpl is over priced

chat is aids || where has all thr challenges gone aswell ? || 
did mat yet messi ? || hellllllllllllllllllllllllllllllllllllllllllo || put messi 
on get in behind if u can || chris is getting ronaldo and messi
|| no one wants jamies coctail sausage haha || free kick with 
messi

Ground-truth: play it to messi he makes 
                      good runs

Generated: get messi for the other team

Output retrieval example from TriDAF model
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bloodtrail bloodtrail bloodtrail bloodtrail bloodtrail || 
yoooo || kappapride || xxuxx skillzzzz , favourite player
you have used this year ? || pl3ad aa9love || are you 
playin with ksi ? ? kappa xxuxx || bought okocha cuz of 
you ant . first game 2 goals 3 assists ! game changer
thank you m8 || play || ! pause || resume || twerkchoke 
twerkchoke twerkchoke || lul

1) good pass jebaited

2) shawn mendez kreygasm 
kreygasm

3) can say that i am american

4) ! camera

5) can you notice me

6) do you have a main squad

7) otw nelson for 47k imma buy 
right now on xbox

8) do *

9) inceptionderp inceptionlove

10) bpl is over priced

chat is aids || where has all thr challenges gone aswell ? || 
did mat yet messi ? || hellllllllllllllllllllllllllllllllllllllllllo || put messi 
on get in behind if u can || chris is getting ronaldo and messi
|| no one wants jamies coctail sausage haha || free kick with 
messi

Ground-truth: play it to messi he makes 
                      good runs

Generated: get messi for the other team

Output generative example from BiDAF model
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Chat Context: xxuxx haha 19 is not bad brotha . i didnt even qualify lol feelbad ||

pogchamp || siiiii pogchamp || boooooooooooooo lul || you guys think i

should get dembele or if alessandrini

Response: comeback goal

Attention visualization: generated word ‘goal’ in response is intuitively aligning to goal-related video 
frames (top-3-weight frames highlighted) and context words (top-10-weight words highlighted) 
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Data/code available at https://github.com/ramakanth-pasunuru/video-dialogue
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