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Continual Learning

[Donahue et al., 2014; Zeneke et al., 2017; Yoon et al., 2018]
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generalize it to new situations.
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Continual Learning

Transfer and Adapt Catastrophic Forgetting Bounded System Size
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Regularization to penalize functional or shared parameters’ change 
[Razavian et al., 2014; Li and Hoiem, 2017; Hinton et al., 2015; Jung et al., 2016; 


Kirk- patrick et al., 2017; Donahue et al., 2014; Yosinski et al., 2014]

Copying the previous task and augmenting with new task’s features  
[Rusu et al., 2016]

Intelligent synapses to accumulate task-related information  
[Zeneke et al., 2017]

Dynamically expandable network based on incoming new data  
[Yoon et al., 2018]

Previous Work
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Leverage Neural Architecture Search!

Continual Architecture Search (CAS): continually evolve the model 
parameters during the sequential training of several tasks by 
leveraging neural architecture search. 

Idea!

[Donahue et al., 2014; Zeneke et al., 2017; Yoon et al., 2018]
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NAS

Neural Architecture Search (NAS): has been recently introduced for 
automatic learning of the model structure for the given dataset/task.


• Shown good improvements on image classification and language modeling


• Computationally feasible NAS approaches:

• Tree-structured search space

• � -greedy explorationϵ

[Zoph & Le, 2017; Baker et al., 2017; Negrinho & Gordon, 2017]
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ENAS

Efficient Neural Architecture Search (ENAS): A weight-sharing strategy 
among search parameters [Pham et al., 2018]

[Zoph & Le, 2017; Baker et al., 2017; Negrinho & Gordon, 2017]
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Efficient Neural Architecture Search via Parameter Sharing

Figure 1. An example of a recurrent cell in our search space with 4 computational nodes. Left: The computational DAG that corresponds

to the recurrent cell. The red edges represent the flow of information in the graph. Middle: The recurrent cell. Right: The outputs of the

controller RNN that result in the cell in the middle and the DAG on the left. Note that nodes 3 and 4 are never sampled by the RNN, so

their results are averaged and are treated as the cell’s output.

Figure 2. The graph represents the entire search space while the

red arrows define a model in the search space, which is decided

by a controller. Here, node 1 is the input to the model whereas

nodes 3 and 6 are the model’s outputs.

perposition of all possible child models in a search space
of NAS, where the nodes represent the local computations
and the edges represent the flow of information. The lo-
cal computations at each node have their own parameters,
which are used only when the particular computation is ac-
tivated. Therefore, ENAS’s design allows parameters to
be shared among all child models, i.e. architectures, in the
search space.

In the following, we facilitate the discussion of ENAS with
an example that illustrates how to design a cell for recur-
rent neural networks from a specified DAG and a controller
(Section 2.1). We will then explain how to train ENAS and
how to derive architectures from ENAS’s controller (Sec-
tion 2.2). Finally, we will explain our search space for de-
signing convolutional architectures (Sections 2.3 and 2.4).

2.1. Designing Recurrent Cells

To design recurrent cells, we employ a DAG with N nodes,
where the nodes represent local computations, and the
edges represent the flow of information between the N
nodes. ENAS’s controller is an RNN that decides: 1) which
edges are activated and 2) which computations are per-
formed at each node in the DAG. This design of our search
space for RNN cells is different from the search space for
RNN cells in Zoph & Le (2017), where the authors fix the
topology of their architectures as a binary tree and only
learn the operations at each node of the tree. In contrast,
our search space allows ENAS to design both the topology

and the operations in RNN cells, and hence is more flexi-
ble.

To create a recurrent cell, the controller RNN samples N
blocks of decisions. Here we illustrate the ENAS mecha-
nism via a simple example recurrent cell with N = 4 com-
putational nodes (visualized in Figure 1). Let xt be the
input signal for a recurrent cell (e.g. word embedding), and
ht−1 be the output from the previous time step. We sample
as follows.

1. At node 1: The controller first samples an activation func-
tion. In our example, the controller chooses the tanh activa-
tion function, which means that node 1 of the recurrent cell

should compute h1 = tanh (xt · W
(x) + ht−1 · W

(h)
1 ).

2. At node 2: The controller then samples a previous index
and an activation function. In our example, it chooses the
previous index 1 and the activation function ReLU. Thus,

node 2 of the cell computes h2 = ReLU(h1 · W
(h)
2,1 ).

3. At node 3: The controller again samples a previous index
and an activation function. In our example, it chooses the
previous index 2 and the activation function ReLU. There-

fore, h3 = ReLU(h2 · W
(h)
3,2 ).

4. At node 4: The controller again samples a previous index
and an activation function. In our example, it chooses the
previous index 1 and the activation function tanh, leading

to h4 = tanh (h1 · W
(h)
4,1 ).

5. For the output, we simply average all the loose ends, i.e. the
nodes that are not selected as inputs to any other nodes. In
our example, since the indices 3 and 4 were never sampled
to be the input for any node, the recurrent cell uses their
average (h3 + h4)/2 as its output. In other words, ht =
(h3 + h4)/2.

In the example above, we note that for each pair of nodes

j < ℓ, there is an independent parameter matrix W
(h)
ℓ,j . As

shown in the example, by choosing the previous indices,
the controller also decides which parameter matrices are
used. Therefore, in ENAS, all recurrent cells in a search
space share the same set of parameters.

Our search space includes an exponential number of con-
figurations. Specifically, if the recurrent cell has N nodes
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Figure: An example of a recurrent cell in our search space with 4 computational nodes. Left: The 
computational DAG that corresponds to the recurrent cell. The red edges represent the flow of 
information in the graph. Middle: The recurrent cell. Right: The outputs of the controller RNN that result 
in the cell in the middle and the DAG on the left. Note that nodes 3 and 4 are never sampled by the RNN, 
so their results are averaged and are treated as the cell’s output. 
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Figure: The graph represents the entire search space while the red arrows define a 
model in the search space, which is decided by a controller. Here, node 1 is the input to 
the model whereas nodes 3 and 6 are the model’s outputs. 



ENAS for Text Classification
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Stage1: 
• Controller samples a 

cell structure and 
use the task’s 
performance as 
feedback


• Controller learns 
optimal cell 
structure
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Stage2: 
• Retrain the model 

using the learned 
optimal cell 
structure in stage-1
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!  is orthogonal to !ψ2 θ1
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θ2,k = θ1,k + ψ2,k

[Bousmalis et al., 2016; Scardapane et al., 2017]



θ1,k ∈ θ1

Task1 (dataset � )d1 Task2 (dataset � )d2

θ2,k ∈ θ2

Condition 1: When training the model on dataset � , we constrain the model 
parameters �  to be sparse, specifically, to be block sparse, i.e., minimize 

�

d1
θ1,k ∈ Rm×n

m

∑
i=1

| ( | |θ1,k[i, :] | |2 ) |1

Continual and Multi-Task Architecture Search R. Pasunuru & M. Bansal

ψ2,k ∈ ψ2

Continual Architecture Search (CAS)
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θ2,k = θ1,k + ψ2,k

[Scardapane et al., 2017]



Condition 2: When training the model on dataset � , we start from � , keep it 
constant, and update  such that: 

1.   is block sparse, i.e., . 

2.   and  are orthogonal. 

d2 θ1,k
ψ2,k

ψ2,k

m

∑
i=1

| ( | |ψ2,k[i, :] | |2 ) |1

θ1,k ψ2,k
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θ1,k ∈ θ1

Task1 (dataset � )d1 Task2 (dataset � )d2

θ2,k ∈ θ2

ψ2,k ∈ ψ2

Continual Architecture Search (CAS)
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θ2,k = θ1,k + ψ2,k

[Bousmalis et al., 2016]
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Figure: Continual architecture search (CAS) approach: green, solid edges (weight parameters) are shared, 
newly-learned edges are represented with red, dashed edges. 
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Figure: Continual architecture search (CAS) approach: green, solid edges (weight parameters) are shared, 
newly-learned edges are represented with red, dashed edges. 
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Figure: Continual architecture search (CAS) approach: green, solid edges (weight parameters) are shared, 
newly-learned edges are represented with red, dashed edges. 
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Generalizable NAS on Sequential Tasks



CAS Results on Text Classification

CIDEr (Vedantam et al., 2015), BLEU-4 (Papineni
et al., 2002), and ROUGE-L (Lin, 2004). We use
the standard evaluation code (Chen et al., 2015)
to obtain these scores for our generated captions
w.r.t. the reference captions.

6.4 Training Details

In all our experiments, our hyperparameter
choices are based on validation set accuracy for
GLUE tasks and an average of the four automatic
evaluation metrics (METEOR, CIDEr, BLEU-4,
and ROUGE-L) for video captioning tasks. We
use same settings for both normal and architecture
search models, unless otherwise specified. More
details in appendix.

7 Results and Analysis

7.1 Continual Learning on GLUE Tasks

Baseline Models: We use bidirectional LSTM-
RNN encoders with max-pooling (Conneau et al.,
2017) as our baseline.4 Further, we used the
ELMo embeddings (Peters et al., 2018) as input
to the encoders, where we allowed to train the
weights on each layer of ELMo to get a final repre-
sentation. Table 1 shows that our baseline models
achieve strong results when compared with GLUE
benchmark baselines (Wang et al., 2018).5 On top
of these strong baselines, we add ENAS approach.
ENAS Models: Next, Table 1 shows that our
ENAS models (for all three tasks QNLI, RTE,
WNLI) perform better or equal than the non-
architecture search based models.6 Note that we
only replace the LSTM-RNN cell with our ENAS
cell, rest of the model architecture in ENAS model
is same as our baseline model.7

4We also tried various other models e.g., self-attention
and cross-attention, but we found that the max-pooling ap-
proach performed best on these datasets.

5We only report single-task (and not 9-task multi-task) re-
sults from the GLUE benchmark for fair comparison to our
models (even for our multi-task-cell learning experiments in
Sec. 7.3, the controller uses rewards from two datasets but the
primary task is then trained only on its own data).

6On validation set, our QNLI ENAS model is statisti-
cally significantly better than the corresponding baseline with
p < 0.01, and statistically equal on RTE and WNLI (where
the validations sets are very small), based on the bootstrap
test (Noreen, 1989; Efron and Tibshirani, 1994) with 100K
samples. Since the test set is hidden, we are not able to cal-
culate the statistical significance on it.

7Note that ENAS random search baseline vs. optimal
search validation performance on QNLI, RTE, and WNLI are
73.3 (vs. 74.8), 58.8 (vs. 60.3), and 54.0 (vs. 55.6), re-
spectively, suggesting that the learned optimal cell structure
is better than the random cell structure.

Models QNLI RTE WNLI
PREVIOUS WORK

BiLSTM+ELMo (2018) 69.4 50.1 65.1
BiLSTM+ELMo+Attn (2018) 61.1 50.3 65.1

BASELINES
Baseline (with ELMo) 73.2 52.3 65.1
ENAS (Architecture Search) 74.5 52.9 65.1

CAS RESULTS
CAS Step-1 (QNLI training) 73.8 N/A N/A
CAS Step-2 (RTE training) 73.6 54.1 N/A
CAS Step-3 (WNLI training) 73.3 54.0 64.4

Table 1: Test results on GLUE tasks for various mod-
els: Baseline, ENAS, and CAS (continual architecture
search). The CAS results maintain statistical equality
across each step.

CAS Models: Next, we apply our continual ar-
chitecture search (CAS) approach on QNLI, RTE,
and WNLI, where we sequentially allow the model
to learn QNLI, RTE, and WNLI (in the order of
decreasing dataset size, following standard trans-
fer setup practice) and the results are as shown in
Table 1. We train on QNLI task, RTE task, and
WNLI task in step-1, step-2, and step-3, respec-
tively. We observe that even though we learn the
models sequentially, we are able to maintain per-
formance on the previously-learned QNLI task in
step-2 (74.1 vs. 74.2 on validation set which is sta-
tistically equal, and 73.6 vs. 73.8 on test).8 Note
that if we remove our sparsity and orthogonality
conditions (Sec. 4), the step-2 QNLI performance
drops from 74.1 to 69.1 on validation set, demon-
strating the importance of our conditions for CAS
(see next paragraph on ‘CAS Condition Ablation’
for more details). Next, we observe a similar pat-
tern when we extend CAS to the WNLI dataset
(see step-3 in Table 1), i.e, we are still able to
maintain the performance on QNLI (as well as
RTE now) from step-2 to step-3 (scores are sta-
tistically equal on validation set).9 Further, if we
compare the performance of QNLI from step-1 to
step-3, we see that they are also stat. equal on
val set (73.9 vs. 74.2). This shows that our CAS
method can maintain the performance of a task in
a continual learning setting with several steps.
CAS Condition Ablation: We also performed
important ablation experiments to understand the

8Note that there is a small drop in QNLI performance for
CAS Step-1 vs. ENAS (74.5 vs. 73.8); however, this is not
true across all experiments, e.g., in case of RTE, CAS Step-1
is in fact better than its corresponding ENAS model (ENAS:
52.9 vs. CAS Step-1: 53.8).

9On validation set, QNLI step-3 vs. step-2 performance is
73.9 vs. 74.1, which is stat. equal. Similarly, on RTE, step-
3 vs. step-2 performance is 61.0 vs. 60.6 on validation set,
which is again statistically equal.

Table: Test results on GLUE tasks for various models: Baseline, ENAS, and CAS (continual 
architecture search). The CAS results maintain statistical equality across each step. 

Continual and Multi-Task Architecture Search R. Pasunuru & M. Bansal
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Bentivoglietal., 2009; Levesque et al., 2011; Rajpurkar et al. 2016; Wang et al., 2018]
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choices are based on validation set accuracy for
GLUE tasks and an average of the four automatic
evaluation metrics (METEOR, CIDEr, BLEU-4,
and ROUGE-L) for video captioning tasks. We
use same settings for both normal and architecture
search models, unless otherwise specified. More
details in appendix.

7 Results and Analysis

7.1 Continual Learning on GLUE Tasks

Baseline Models: We use bidirectional LSTM-
RNN encoders with max-pooling (Conneau et al.,
2017) as our baseline.4 Further, we used the
ELMo embeddings (Peters et al., 2018) as input
to the encoders, where we allowed to train the
weights on each layer of ELMo to get a final repre-
sentation. Table 1 shows that our baseline models
achieve strong results when compared with GLUE
benchmark baselines (Wang et al., 2018).5 On top
of these strong baselines, we add ENAS approach.
ENAS Models: Next, Table 1 shows that our
ENAS models (for all three tasks QNLI, RTE,
WNLI) perform better or equal than the non-
architecture search based models.6 Note that we
only replace the LSTM-RNN cell with our ENAS
cell, rest of the model architecture in ENAS model
is same as our baseline model.7

4We also tried various other models e.g., self-attention
and cross-attention, but we found that the max-pooling ap-
proach performed best on these datasets.

5We only report single-task (and not 9-task multi-task) re-
sults from the GLUE benchmark for fair comparison to our
models (even for our multi-task-cell learning experiments in
Sec. 7.3, the controller uses rewards from two datasets but the
primary task is then trained only on its own data).

6On validation set, our QNLI ENAS model is statisti-
cally significantly better than the corresponding baseline with
p < 0.01, and statistically equal on RTE and WNLI (where
the validations sets are very small), based on the bootstrap
test (Noreen, 1989; Efron and Tibshirani, 1994) with 100K
samples. Since the test set is hidden, we are not able to cal-
culate the statistical significance on it.

7Note that ENAS random search baseline vs. optimal
search validation performance on QNLI, RTE, and WNLI are
73.3 (vs. 74.8), 58.8 (vs. 60.3), and 54.0 (vs. 55.6), re-
spectively, suggesting that the learned optimal cell structure
is better than the random cell structure.

Models QNLI RTE WNLI
PREVIOUS WORK

BiLSTM+ELMo (2018) 69.4 50.1 65.1
BiLSTM+ELMo+Attn (2018) 61.1 50.3 65.1

BASELINES
Baseline (with ELMo) 73.2 52.3 65.1
ENAS (Architecture Search) 74.5 52.9 65.1

CAS RESULTS
CAS Step-1 (QNLI training) 73.8 N/A N/A
CAS Step-2 (RTE training) 73.6 54.1 N/A
CAS Step-3 (WNLI training) 73.3 54.0 64.4

Table 1: Test results on GLUE tasks for various mod-
els: Baseline, ENAS, and CAS (continual architecture
search). The CAS results maintain statistical equality
across each step.

CAS Models: Next, we apply our continual ar-
chitecture search (CAS) approach on QNLI, RTE,
and WNLI, where we sequentially allow the model
to learn QNLI, RTE, and WNLI (in the order of
decreasing dataset size, following standard trans-
fer setup practice) and the results are as shown in
Table 1. We train on QNLI task, RTE task, and
WNLI task in step-1, step-2, and step-3, respec-
tively. We observe that even though we learn the
models sequentially, we are able to maintain per-
formance on the previously-learned QNLI task in
step-2 (74.1 vs. 74.2 on validation set which is sta-
tistically equal, and 73.6 vs. 73.8 on test).8 Note
that if we remove our sparsity and orthogonality
conditions (Sec. 4), the step-2 QNLI performance
drops from 74.1 to 69.1 on validation set, demon-
strating the importance of our conditions for CAS
(see next paragraph on ‘CAS Condition Ablation’
for more details). Next, we observe a similar pat-
tern when we extend CAS to the WNLI dataset
(see step-3 in Table 1), i.e, we are still able to
maintain the performance on QNLI (as well as
RTE now) from step-2 to step-3 (scores are sta-
tistically equal on validation set).9 Further, if we
compare the performance of QNLI from step-1 to
step-3, we see that they are also stat. equal on
val set (73.9 vs. 74.2). This shows that our CAS
method can maintain the performance of a task in
a continual learning setting with several steps.
CAS Condition Ablation: We also performed
important ablation experiments to understand the

8Note that there is a small drop in QNLI performance for
CAS Step-1 vs. ENAS (74.5 vs. 73.8); however, this is not
true across all experiments, e.g., in case of RTE, CAS Step-1
is in fact better than its corresponding ENAS model (ENAS:
52.9 vs. CAS Step-1: 53.8).

9On validation set, QNLI step-3 vs. step-2 performance is
73.9 vs. 74.1, which is stat. equal. Similarly, on RTE, step-
3 vs. step-2 performance is 61.0 vs. 60.6 on validation set,
which is again statistically equal.
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CAS Results on Text Classification

CIDEr (Vedantam et al., 2015), BLEU-4 (Papineni
et al., 2002), and ROUGE-L (Lin, 2004). We use
the standard evaluation code (Chen et al., 2015)
to obtain these scores for our generated captions
w.r.t. the reference captions.

6.4 Training Details

In all our experiments, our hyperparameter
choices are based on validation set accuracy for
GLUE tasks and an average of the four automatic
evaluation metrics (METEOR, CIDEr, BLEU-4,
and ROUGE-L) for video captioning tasks. We
use same settings for both normal and architecture
search models, unless otherwise specified. More
details in appendix.

7 Results and Analysis

7.1 Continual Learning on GLUE Tasks

Baseline Models: We use bidirectional LSTM-
RNN encoders with max-pooling (Conneau et al.,
2017) as our baseline.4 Further, we used the
ELMo embeddings (Peters et al., 2018) as input
to the encoders, where we allowed to train the
weights on each layer of ELMo to get a final repre-
sentation. Table 1 shows that our baseline models
achieve strong results when compared with GLUE
benchmark baselines (Wang et al., 2018).5 On top
of these strong baselines, we add ENAS approach.
ENAS Models: Next, Table 1 shows that our
ENAS models (for all three tasks QNLI, RTE,
WNLI) perform better or equal than the non-
architecture search based models.6 Note that we
only replace the LSTM-RNN cell with our ENAS
cell, rest of the model architecture in ENAS model
is same as our baseline model.7

4We also tried various other models e.g., self-attention
and cross-attention, but we found that the max-pooling ap-
proach performed best on these datasets.

5We only report single-task (and not 9-task multi-task) re-
sults from the GLUE benchmark for fair comparison to our
models (even for our multi-task-cell learning experiments in
Sec. 7.3, the controller uses rewards from two datasets but the
primary task is then trained only on its own data).

6On validation set, our QNLI ENAS model is statisti-
cally significantly better than the corresponding baseline with
p < 0.01, and statistically equal on RTE and WNLI (where
the validations sets are very small), based on the bootstrap
test (Noreen, 1989; Efron and Tibshirani, 1994) with 100K
samples. Since the test set is hidden, we are not able to cal-
culate the statistical significance on it.

7Note that ENAS random search baseline vs. optimal
search validation performance on QNLI, RTE, and WNLI are
73.3 (vs. 74.8), 58.8 (vs. 60.3), and 54.0 (vs. 55.6), re-
spectively, suggesting that the learned optimal cell structure
is better than the random cell structure.

Models QNLI RTE WNLI
PREVIOUS WORK

BiLSTM+ELMo (2018) 69.4 50.1 65.1
BiLSTM+ELMo+Attn (2018) 61.1 50.3 65.1

BASELINES
Baseline (with ELMo) 73.2 52.3 65.1
ENAS (Architecture Search) 74.5 52.9 65.1

CAS RESULTS
CAS Step-1 (QNLI training) 73.8 N/A N/A
CAS Step-2 (RTE training) 73.6 54.1 N/A
CAS Step-3 (WNLI training) 73.3 54.0 64.4

Table 1: Test results on GLUE tasks for various mod-
els: Baseline, ENAS, and CAS (continual architecture
search). The CAS results maintain statistical equality
across each step.

CAS Models: Next, we apply our continual ar-
chitecture search (CAS) approach on QNLI, RTE,
and WNLI, where we sequentially allow the model
to learn QNLI, RTE, and WNLI (in the order of
decreasing dataset size, following standard trans-
fer setup practice) and the results are as shown in
Table 1. We train on QNLI task, RTE task, and
WNLI task in step-1, step-2, and step-3, respec-
tively. We observe that even though we learn the
models sequentially, we are able to maintain per-
formance on the previously-learned QNLI task in
step-2 (74.1 vs. 74.2 on validation set which is sta-
tistically equal, and 73.6 vs. 73.8 on test).8 Note
that if we remove our sparsity and orthogonality
conditions (Sec. 4), the step-2 QNLI performance
drops from 74.1 to 69.1 on validation set, demon-
strating the importance of our conditions for CAS
(see next paragraph on ‘CAS Condition Ablation’
for more details). Next, we observe a similar pat-
tern when we extend CAS to the WNLI dataset
(see step-3 in Table 1), i.e, we are still able to
maintain the performance on QNLI (as well as
RTE now) from step-2 to step-3 (scores are sta-
tistically equal on validation set).9 Further, if we
compare the performance of QNLI from step-1 to
step-3, we see that they are also stat. equal on
val set (73.9 vs. 74.2). This shows that our CAS
method can maintain the performance of a task in
a continual learning setting with several steps.
CAS Condition Ablation: We also performed
important ablation experiments to understand the

8Note that there is a small drop in QNLI performance for
CAS Step-1 vs. ENAS (74.5 vs. 73.8); however, this is not
true across all experiments, e.g., in case of RTE, CAS Step-1
is in fact better than its corresponding ENAS model (ENAS:
52.9 vs. CAS Step-1: 53.8).

9On validation set, QNLI step-3 vs. step-2 performance is
73.9 vs. 74.1, which is stat. equal. Similarly, on RTE, step-
3 vs. step-2 performance is 61.0 vs. 60.6 on validation set,
which is again statistically equal.
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Table: Test results on GLUE tasks for various models: Baseline, ENAS, and CAS (continual 
architecture search). The CAS results maintain statistical equality across each step. 
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CAS Ablation

No Condition

Only Condition 2.1 
(block-sparse)

Only Condition 2.2 
(orthogonality)

With both Conditions

Validation accuracy on QNLI
65 67.5 70 72.5 75

69.1

71.5

69.4

74.1
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CAS Results on Video Captioning

Models MSR-VTT MSVD
C B R M AVG C B R M AVG

Baseline (Pasunuru and Bansal, 2017b) 48.2 40.8 60.7 28.1 44.5 85.8 52.5 71.2 35.0 61.1
ENAS 48.9 41.3 61.2 28.1 44.9 87.2 52.9 71.7 35.2 61.8
CAS Step-1 (MSR-VTT training) 48.9 41.1 60.5 27.5 44.5 N/A N/A N/A N/A N/A
CAS Step-2 (MSVD training) 48.4 40.1 59.9 27.1 43.9 88.1 52.4 71.3 35.1 61.7

Table 3: Video captioning results with Baseline, ENAS, and CAS models. Baseline is reproduced numbers from
github of Pasunuru and Bansal (2017b) which uses advanced latest visual features (ResNet-152 and ResNeXt-101)
for video encoder. C, B, R, M: CIDEr, BLEU-4, ROUGE-L, and METEOR metrics.

Cell Structure Performance on RTE
LSTM cell 52.3
QNLI cell 52.4
WNLI cell 52.2
RTE cell 52.9
Multi-Task cell 53.9

Table 4: Comparison of MAS cell on RTE task.

Cell Structure Performance on DiDeMo
M C B R

LSTM cell 12.7 26.7 7.6 30.6
MSR-VTT cell 12.9 25.7 7.4 30.3
MSVD cell 12.1 25.2 7.9 30.6
DiDeMO cell 13.1 27.1 7.9 30.9
Multi-Task cell 13.4 27.5 8.1 30.8

Table 5: Comparison of MAS cell on DiDeMO task.

that a cell learned on multiple tasks is more gener-
alizable to other tasks.
Human Evaluation: We performed a similar hu-
man study as Sec. 7.2, and got Likert scores of
2.94 for multi-task cell vs. 2.81 for LSTM cell,
which suggests that the multi-task cell is more
generalizable than the standard LSTM cell.

7.5 Analysis

Evolved Cell Structure with CAS Fig. 4
presents the cell structure in each step for the
CAS approach, where we sequentially train QNLI,
RTE, and WNLI tasks. Overall, we observe that
the cell structures in CAS preserve the properties
of certain edges while creating new edges for new
capabilities. We notice that the cell structure in
step-1 and step-2 share some common edges and
activation functions (e.g., inputs to node 0) along
with some new edge connections in step-2 (e.g.,
node 1 to node 3). Further, we observe that the
step-3 cell uses some common edges w.r.t. the
step-2 cell, but uses different activation functions,
e.g., edge between node 0 and node 1 is the same,
but the activation function is different. This shows
that those edges are learning weights which are
stable w.r.t. change in the activation functions.

Multi-Task Cell Structure Fig. 5 presents our
multi-task MAS cell structure (with joint rewards
from QNLI and WNLI), versus the RTE-ENAS
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Figure 4: Learned cell structures for step-1, step-2, and
step-3 of continual architecture search for GLUE tasks.
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Figure 5: Learned multi-task & RTE cell structures.

cell structure. We observe that the MAS cell is
relatively less complex, i.e., uses several identity
functions and very few activation functions in its
structure vs. the RTE cell. This shows that the
individual-task-optimized cell structures are com-
plex and over-specialized to that task, whereas our
multi-task cell structures are simpler for general-
izability to new unseen tasks.

8 Conclusion

We first presented an architecture search approach
for text classification and video caption generation
tasks. Next, we introduced a novel paradigm of
transfer learning by combining architecture search
with continual learning to avoid catastrophic for-
getting. We also explore multi-task cell learning
for generalizability.
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CAS Results on Video Captioning

Models MSR-VTT MSVD
C B R M AVG C B R M AVG

Baseline (Pasunuru and Bansal, 2017b) 48.2 40.8 60.7 28.1 44.5 85.8 52.5 71.2 35.0 61.1
ENAS 48.9 41.3 61.2 28.1 44.9 87.2 52.9 71.7 35.2 61.8
CAS Step-1 (MSR-VTT training) 48.9 41.1 60.5 27.5 44.5 N/A N/A N/A N/A N/A
CAS Step-2 (MSVD training) 48.4 40.1 59.9 27.1 43.9 88.1 52.4 71.3 35.1 61.7

Table 3: Video captioning results with Baseline, ENAS, and CAS models. Baseline is reproduced numbers from
github of Pasunuru and Bansal (2017b) which uses advanced latest visual features (ResNet-152 and ResNeXt-101)
for video encoder. C, B, R, M: CIDEr, BLEU-4, ROUGE-L, and METEOR metrics.

Cell Structure Performance on RTE
LSTM cell 52.3
QNLI cell 52.4
WNLI cell 52.2
RTE cell 52.9
Multi-Task cell 53.9

Table 4: Comparison of MAS cell on RTE task.

Cell Structure Performance on DiDeMo
M C B R

LSTM cell 12.7 26.7 7.6 30.6
MSR-VTT cell 12.9 25.7 7.4 30.3
MSVD cell 12.1 25.2 7.9 30.6
DiDeMO cell 13.1 27.1 7.9 30.9
Multi-Task cell 13.4 27.5 8.1 30.8

Table 5: Comparison of MAS cell on DiDeMO task.

that a cell learned on multiple tasks is more gener-
alizable to other tasks.
Human Evaluation: We performed a similar hu-
man study as Sec. 7.2, and got Likert scores of
2.94 for multi-task cell vs. 2.81 for LSTM cell,
which suggests that the multi-task cell is more
generalizable than the standard LSTM cell.

7.5 Analysis

Evolved Cell Structure with CAS Fig. 4
presents the cell structure in each step for the
CAS approach, where we sequentially train QNLI,
RTE, and WNLI tasks. Overall, we observe that
the cell structures in CAS preserve the properties
of certain edges while creating new edges for new
capabilities. We notice that the cell structure in
step-1 and step-2 share some common edges and
activation functions (e.g., inputs to node 0) along
with some new edge connections in step-2 (e.g.,
node 1 to node 3). Further, we observe that the
step-3 cell uses some common edges w.r.t. the
step-2 cell, but uses different activation functions,
e.g., edge between node 0 and node 1 is the same,
but the activation function is different. This shows
that those edges are learning weights which are
stable w.r.t. change in the activation functions.

Multi-Task Cell Structure Fig. 5 presents our
multi-task MAS cell structure (with joint rewards
from QNLI and WNLI), versus the RTE-ENAS
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Figure 4: Learned cell structures for step-1, step-2, and
step-3 of continual architecture search for GLUE tasks.
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Figure 5: Learned multi-task & RTE cell structures.

cell structure. We observe that the MAS cell is
relatively less complex, i.e., uses several identity
functions and very few activation functions in its
structure vs. the RTE cell. This shows that the
individual-task-optimized cell structures are com-
plex and over-specialized to that task, whereas our
multi-task cell structures are simpler for general-
izability to new unseen tasks.

8 Conclusion

We first presented an architecture search approach
for text classification and video caption generation
tasks. Next, we introduced a novel paradigm of
transfer learning by combining architecture search
with continual learning to avoid catastrophic for-
getting. We also explore multi-task cell learning
for generalizability.
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CAS Learned Cells

Models MSR-VTT MSVD
C B R M AVG C B R M AVG

Baseline (Pasunuru and Bansal, 2017b) 48.2 40.8 60.7 28.1 44.5 85.8 52.5 71.2 35.0 61.1
ENAS 48.9 41.3 61.2 28.1 44.9 87.2 52.9 71.7 35.2 61.8
CAS Step-1 (MSR-VTT training) 48.9 41.1 60.5 27.5 44.5 N/A N/A N/A N/A N/A
CAS Step-2 (MSVD training) 48.4 40.1 59.9 27.1 43.9 88.1 52.4 71.3 35.1 61.7

Table 3: Video captioning results with Baseline, ENAS, and CAS models. Baseline is reproduced numbers from
github of Pasunuru and Bansal (2017b) which uses advanced latest visual features (ResNet-152 and ResNeXt-101)
for video encoder. C, B, R, M: CIDEr, BLEU-4, ROUGE-L, and METEOR metrics.

Cell Structure Performance on RTE
LSTM cell 52.3
QNLI cell 52.4
WNLI cell 52.2
RTE cell 52.9
Multi-Task cell 53.9

Table 4: Comparison of MAS cell on RTE task.

Cell Structure Performance on DiDeMo
M C B R

LSTM cell 12.7 26.7 7.6 30.6
MSR-VTT cell 12.9 25.7 7.4 30.3
MSVD cell 12.1 25.2 7.9 30.6
DiDeMO cell 13.1 27.1 7.9 30.9
Multi-Task cell 13.4 27.5 8.1 30.8

Table 5: Comparison of MAS cell on DiDeMO task.

that a cell learned on multiple tasks is more gener-
alizable to other tasks.
Human Evaluation: We performed a similar hu-
man study as Sec. 7.2, and got Likert scores of
2.94 for multi-task cell vs. 2.81 for LSTM cell,
which suggests that the multi-task cell is more
generalizable than the standard LSTM cell.

7.5 Analysis

Evolved Cell Structure with CAS Fig. 4
presents the cell structure in each step for the
CAS approach, where we sequentially train QNLI,
RTE, and WNLI tasks. Overall, we observe that
the cell structures in CAS preserve the properties
of certain edges while creating new edges for new
capabilities. We notice that the cell structure in
step-1 and step-2 share some common edges and
activation functions (e.g., inputs to node 0) along
with some new edge connections in step-2 (e.g.,
node 1 to node 3). Further, we observe that the
step-3 cell uses some common edges w.r.t. the
step-2 cell, but uses different activation functions,
e.g., edge between node 0 and node 1 is the same,
but the activation function is different. This shows
that those edges are learning weights which are
stable w.r.t. change in the activation functions.

Multi-Task Cell Structure Fig. 5 presents our
multi-task MAS cell structure (with joint rewards
from QNLI and WNLI), versus the RTE-ENAS
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Figure 4: Learned cell structures for step-1, step-2, and
step-3 of continual architecture search for GLUE tasks.
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cell structure. We observe that the MAS cell is
relatively less complex, i.e., uses several identity
functions and very few activation functions in its
structure vs. the RTE cell. This shows that the
individual-task-optimized cell structures are com-
plex and over-specialized to that task, whereas our
multi-task cell structures are simpler for general-
izability to new unseen tasks.

8 Conclusion

We first presented an architecture search approach
for text classification and video caption generation
tasks. Next, we introduced a novel paradigm of
transfer learning by combining architecture search
with continual learning to avoid catastrophic for-
getting. We also explore multi-task cell learning
for generalizability.
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CAS Learned Cells

Models MSR-VTT MSVD
C B R M AVG C B R M AVG

Baseline (Pasunuru and Bansal, 2017b) 48.2 40.8 60.7 28.1 44.5 85.8 52.5 71.2 35.0 61.1
ENAS 48.9 41.3 61.2 28.1 44.9 87.2 52.9 71.7 35.2 61.8
CAS Step-1 (MSR-VTT training) 48.9 41.1 60.5 27.5 44.5 N/A N/A N/A N/A N/A
CAS Step-2 (MSVD training) 48.4 40.1 59.9 27.1 43.9 88.1 52.4 71.3 35.1 61.7

Table 3: Video captioning results with Baseline, ENAS, and CAS models. Baseline is reproduced numbers from
github of Pasunuru and Bansal (2017b) which uses advanced latest visual features (ResNet-152 and ResNeXt-101)
for video encoder. C, B, R, M: CIDEr, BLEU-4, ROUGE-L, and METEOR metrics.

Cell Structure Performance on RTE
LSTM cell 52.3
QNLI cell 52.4
WNLI cell 52.2
RTE cell 52.9
Multi-Task cell 53.9

Table 4: Comparison of MAS cell on RTE task.

Cell Structure Performance on DiDeMo
M C B R

LSTM cell 12.7 26.7 7.6 30.6
MSR-VTT cell 12.9 25.7 7.4 30.3
MSVD cell 12.1 25.2 7.9 30.6
DiDeMO cell 13.1 27.1 7.9 30.9
Multi-Task cell 13.4 27.5 8.1 30.8

Table 5: Comparison of MAS cell on DiDeMO task.

that a cell learned on multiple tasks is more gener-
alizable to other tasks.
Human Evaluation: We performed a similar hu-
man study as Sec. 7.2, and got Likert scores of
2.94 for multi-task cell vs. 2.81 for LSTM cell,
which suggests that the multi-task cell is more
generalizable than the standard LSTM cell.

7.5 Analysis

Evolved Cell Structure with CAS Fig. 4
presents the cell structure in each step for the
CAS approach, where we sequentially train QNLI,
RTE, and WNLI tasks. Overall, we observe that
the cell structures in CAS preserve the properties
of certain edges while creating new edges for new
capabilities. We notice that the cell structure in
step-1 and step-2 share some common edges and
activation functions (e.g., inputs to node 0) along
with some new edge connections in step-2 (e.g.,
node 1 to node 3). Further, we observe that the
step-3 cell uses some common edges w.r.t. the
step-2 cell, but uses different activation functions,
e.g., edge between node 0 and node 1 is the same,
but the activation function is different. This shows
that those edges are learning weights which are
stable w.r.t. change in the activation functions.

Multi-Task Cell Structure Fig. 5 presents our
multi-task MAS cell structure (with joint rewards
from QNLI and WNLI), versus the RTE-ENAS
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cell structure. We observe that the MAS cell is
relatively less complex, i.e., uses several identity
functions and very few activation functions in its
structure vs. the RTE cell. This shows that the
individual-task-optimized cell structures are com-
plex and over-specialized to that task, whereas our
multi-task cell structures are simpler for general-
izability to new unseen tasks.

8 Conclusion

We first presented an architecture search approach
for text classification and video caption generation
tasks. Next, we introduced a novel paradigm of
transfer learning by combining architecture search
with continual learning to avoid catastrophic for-
getting. We also explore multi-task cell learning
for generalizability.
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Models MSR-VTT MSVD
C B R M AVG C B R M AVG

Baseline (Pasunuru and Bansal, 2017b) 48.2 40.8 60.7 28.1 44.5 85.8 52.5 71.2 35.0 61.1
ENAS 48.9 41.3 61.2 28.1 44.9 87.2 52.9 71.7 35.2 61.8
CAS Step-1 (MSR-VTT training) 48.9 41.1 60.5 27.5 44.5 N/A N/A N/A N/A N/A
CAS Step-2 (MSVD training) 48.4 40.1 59.9 27.1 43.9 88.1 52.4 71.3 35.1 61.7

Table 3: Video captioning results with Baseline, ENAS, and CAS models. Baseline is reproduced numbers from
github of Pasunuru and Bansal (2017b) which uses advanced latest visual features (ResNet-152 and ResNeXt-101)
for video encoder. C, B, R, M: CIDEr, BLEU-4, ROUGE-L, and METEOR metrics.

Cell Structure Performance on RTE
LSTM cell 52.3
QNLI cell 52.4
WNLI cell 52.2
RTE cell 52.9
Multi-Task cell 53.9

Table 4: Comparison of MAS cell on RTE task.

Cell Structure Performance on DiDeMo
M C B R

LSTM cell 12.7 26.7 7.6 30.6
MSR-VTT cell 12.9 25.7 7.4 30.3
MSVD cell 12.1 25.2 7.9 30.6
DiDeMO cell 13.1 27.1 7.9 30.9
Multi-Task cell 13.4 27.5 8.1 30.8

Table 5: Comparison of MAS cell on DiDeMO task.

that a cell learned on multiple tasks is more gener-
alizable to other tasks.
Human Evaluation: We performed a similar hu-
man study as Sec. 7.2, and got Likert scores of
2.94 for multi-task cell vs. 2.81 for LSTM cell,
which suggests that the multi-task cell is more
generalizable than the standard LSTM cell.

7.5 Analysis

Evolved Cell Structure with CAS Fig. 4
presents the cell structure in each step for the
CAS approach, where we sequentially train QNLI,
RTE, and WNLI tasks. Overall, we observe that
the cell structures in CAS preserve the properties
of certain edges while creating new edges for new
capabilities. We notice that the cell structure in
step-1 and step-2 share some common edges and
activation functions (e.g., inputs to node 0) along
with some new edge connections in step-2 (e.g.,
node 1 to node 3). Further, we observe that the
step-3 cell uses some common edges w.r.t. the
step-2 cell, but uses different activation functions,
e.g., edge between node 0 and node 1 is the same,
but the activation function is different. This shows
that those edges are learning weights which are
stable w.r.t. change in the activation functions.

Multi-Task Cell Structure Fig. 5 presents our
multi-task MAS cell structure (with joint rewards
from QNLI and WNLI), versus the RTE-ENAS
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cell structure. We observe that the MAS cell is
relatively less complex, i.e., uses several identity
functions and very few activation functions in its
structure vs. the RTE cell. This shows that the
individual-task-optimized cell structures are com-
plex and over-specialized to that task, whereas our
multi-task cell structures are simpler for general-
izability to new unseen tasks.

8 Conclusion

We first presented an architecture search approach
for text classification and video caption generation
tasks. Next, we introduced a novel paradigm of
transfer learning by combining architecture search
with continual learning to avoid catastrophic for-
getting. We also explore multi-task cell learning
for generalizability.
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• Architectures found by NAS are dataset dependent


• Human designed cell (e.g., LSTM and GRU) work well 
across multiple datasets

Generalizable Cell on Multiple Tasks
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• Architectures found by NAS are dataset dependent


• Human designed cell (e.g., LSTM and GRU) work well 
across multiple datasets

Generalizable Cell on Multiple Tasks

Can we learn generalizable NAS cell structures?
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• Architectures found by NAS are dataset dependent


• Human designed cell (e.g., LSTM and GRU) work well 
across multiple datasets

Generalizable Cell on Multiple Tasks

Can we learn generalizable NAS cell structures?

Multi-Task Learning!!
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MAS Results on Text Classification

LSTM cell

QNLI cell

WNLI cell

RTE cell

Multi-Task Cell

Validation accuracy on RTE
52 52.5 53 53.5 54
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Multi-Task cell is learned

 using QNLI and WNLI dataset



MAS Learned Cells

Figure: Learned Multi-task and RTE cell Structures.

Models MSR-VTT MSVD
C B R M AVG C B R M AVG

Baseline (Pasunuru and Bansal, 2017b) 48.2 40.8 60.7 28.1 44.5 85.8 52.5 71.2 35.0 61.1
ENAS 48.9 41.3 61.2 28.1 44.9 87.2 52.9 71.7 35.2 61.8
CAS Step-1 (MSR-VTT training) 48.9 41.1 60.5 27.5 44.5 N/A N/A N/A N/A N/A
CAS Step-2 (MSVD training) 48.4 40.1 59.9 27.1 43.9 88.1 52.4 71.3 35.1 61.7

Table 3: Video captioning results with Baseline, ENAS, and CAS models. Baseline is reproduced numbers from
github of Pasunuru and Bansal (2017b) which uses advanced latest visual features (ResNet-152 and ResNeXt-101)
for video encoder. C, B, R, M: CIDEr, BLEU-4, ROUGE-L, and METEOR metrics.

Cell Structure Performance on RTE
LSTM cell 52.3
QNLI cell 52.4
WNLI cell 52.2
RTE cell 52.9
Multi-Task cell 53.9

Table 4: Comparison of MAS cell on RTE task.

Cell Structure Performance on DiDeMo
M C B R

LSTM cell 12.7 26.7 7.6 30.6
MSR-VTT cell 12.9 25.7 7.4 30.3
MSVD cell 12.1 25.2 7.9 30.6
DiDeMO cell 13.1 27.1 7.9 30.9
Multi-Task cell 13.4 27.5 8.1 30.8

Table 5: Comparison of MAS cell on DiDeMO task.

that a cell learned on multiple tasks is more gener-
alizable to other tasks.
Human Evaluation: We performed a similar hu-
man study as Sec. 7.2, and got Likert scores of
2.94 for multi-task cell vs. 2.81 for LSTM cell,
which suggests that the multi-task cell is more
generalizable than the standard LSTM cell.

7.5 Analysis

Evolved Cell Structure with CAS Fig. 4
presents the cell structure in each step for the
CAS approach, where we sequentially train QNLI,
RTE, and WNLI tasks. Overall, we observe that
the cell structures in CAS preserve the properties
of certain edges while creating new edges for new
capabilities. We notice that the cell structure in
step-1 and step-2 share some common edges and
activation functions (e.g., inputs to node 0) along
with some new edge connections in step-2 (e.g.,
node 1 to node 3). Further, we observe that the
step-3 cell uses some common edges w.r.t. the
step-2 cell, but uses different activation functions,
e.g., edge between node 0 and node 1 is the same,
but the activation function is different. This shows
that those edges are learning weights which are
stable w.r.t. change in the activation functions.

Multi-Task Cell Structure Fig. 5 presents our
multi-task MAS cell structure (with joint rewards
from QNLI and WNLI), versus the RTE-ENAS
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Figure 5: Learned multi-task & RTE cell structures.

cell structure. We observe that the MAS cell is
relatively less complex, i.e., uses several identity
functions and very few activation functions in its
structure vs. the RTE cell. This shows that the
individual-task-optimized cell structures are com-
plex and over-specialized to that task, whereas our
multi-task cell structures are simpler for general-
izability to new unseen tasks.

8 Conclusion

We first presented an architecture search approach
for text classification and video caption generation
tasks. Next, we introduced a novel paradigm of
transfer learning by combining architecture search
with continual learning to avoid catastrophic for-
getting. We also explore multi-task cell learning
for generalizability.
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MAS Learned Cells

Figure: Learned Multi-task and RTE cell Structures.

Models MSR-VTT MSVD
C B R M AVG C B R M AVG

Baseline (Pasunuru and Bansal, 2017b) 48.2 40.8 60.7 28.1 44.5 85.8 52.5 71.2 35.0 61.1
ENAS 48.9 41.3 61.2 28.1 44.9 87.2 52.9 71.7 35.2 61.8
CAS Step-1 (MSR-VTT training) 48.9 41.1 60.5 27.5 44.5 N/A N/A N/A N/A N/A
CAS Step-2 (MSVD training) 48.4 40.1 59.9 27.1 43.9 88.1 52.4 71.3 35.1 61.7

Table 3: Video captioning results with Baseline, ENAS, and CAS models. Baseline is reproduced numbers from
github of Pasunuru and Bansal (2017b) which uses advanced latest visual features (ResNet-152 and ResNeXt-101)
for video encoder. C, B, R, M: CIDEr, BLEU-4, ROUGE-L, and METEOR metrics.

Cell Structure Performance on RTE
LSTM cell 52.3
QNLI cell 52.4
WNLI cell 52.2
RTE cell 52.9
Multi-Task cell 53.9

Table 4: Comparison of MAS cell on RTE task.

Cell Structure Performance on DiDeMo
M C B R

LSTM cell 12.7 26.7 7.6 30.6
MSR-VTT cell 12.9 25.7 7.4 30.3
MSVD cell 12.1 25.2 7.9 30.6
DiDeMO cell 13.1 27.1 7.9 30.9
Multi-Task cell 13.4 27.5 8.1 30.8

Table 5: Comparison of MAS cell on DiDeMO task.

that a cell learned on multiple tasks is more gener-
alizable to other tasks.
Human Evaluation: We performed a similar hu-
man study as Sec. 7.2, and got Likert scores of
2.94 for multi-task cell vs. 2.81 for LSTM cell,
which suggests that the multi-task cell is more
generalizable than the standard LSTM cell.

7.5 Analysis

Evolved Cell Structure with CAS Fig. 4
presents the cell structure in each step for the
CAS approach, where we sequentially train QNLI,
RTE, and WNLI tasks. Overall, we observe that
the cell structures in CAS preserve the properties
of certain edges while creating new edges for new
capabilities. We notice that the cell structure in
step-1 and step-2 share some common edges and
activation functions (e.g., inputs to node 0) along
with some new edge connections in step-2 (e.g.,
node 1 to node 3). Further, we observe that the
step-3 cell uses some common edges w.r.t. the
step-2 cell, but uses different activation functions,
e.g., edge between node 0 and node 1 is the same,
but the activation function is different. This shows
that those edges are learning weights which are
stable w.r.t. change in the activation functions.

Multi-Task Cell Structure Fig. 5 presents our
multi-task MAS cell structure (with joint rewards
from QNLI and WNLI), versus the RTE-ENAS
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cell structure. We observe that the MAS cell is
relatively less complex, i.e., uses several identity
functions and very few activation functions in its
structure vs. the RTE cell. This shows that the
individual-task-optimized cell structures are com-
plex and over-specialized to that task, whereas our
multi-task cell structures are simpler for general-
izability to new unseen tasks.

8 Conclusion

We first presented an architecture search approach
for text classification and video caption generation
tasks. Next, we introduced a novel paradigm of
transfer learning by combining architecture search
with continual learning to avoid catastrophic for-
getting. We also explore multi-task cell learning
for generalizability.
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