Ramkanth Pasunuru

www.rama-kanth.com

Mohit Bansal

www.cs.unc.edu/~mbansal/

1

In this work, we extend architecture search approach to two important paradigms of transfer learning.

In this work, we extend architecture search approach to two important paradigms of transfer learning.

Continual Learning

Model parameters evolve and adapt when trained sequentially on a new task

In this work, we extend architecture search approach to two important paradigms of transfer learning.

Continual Learning

Multi-Task Learning

Model parameters evolve and adapt when trained sequentially on a new task

Given multiple tasks in parallel, learns a generalizable cell structure

Definition: Continual learning (CL) is the ability to learn continually from a stream of data, building on what was learnt previously, while being able to reapply, adapt and generalize it to new situations.

Definition: Continual learning (CL) is the ability to learn continually from a stream of data, building on what was learnt previously, while being able to reapply, adapt and generalize it to new situations.

Key Challenges:

Transfer and Adapt

Definition: Continual learning (CL) is the ability to learn continually from a stream of data, building on what was learnt previously, while being able to reapply, adapt and generalize it to new situations.

Key Challenges:

Transfer and Adapt

Catastrophic Forgetting

Definition: Continual learning (CL) is the ability to learn continually from a stream of data, building on what was learnt previously, while being able to reapply, adapt and generalize it to new situations.

Key Challenges:

Transfer and Adapt

Regularization to penalize functional or shared parameters' change

[Razavian et al., 2014; Li and Hoiem, 2017; Hinton et al., 2015; Jung et al., 2016; Kirk- patrick et al., 2017; Donahue et al., 2014; Yosinski et al., 2014]

Copying the previous task and augmenting with new task's features [Rusu et al., 2016]

Intelligent synapses to accumulate task-related information [Zeneke et al., 2017]

Dynamically expandable network based on incoming new data [Yoon et al., 2018]

Previous Work

Leverage Neural Architecture Search!

Continual Architecture Search (CAS): continually evolve the model parameters during the sequential training of several tasks by leveraging neural architecture search.

Neural Architecture Search (NAS): has been recently introduced for automatic learning of the model structure for the given dataset/task.

- Computationally feasible NAS approaches:
 - Tree-structured search space
 - *e*-greedy exploration

NAS

Shown good improvements on image classification and language modeling

[Zoph & Le, 2017; Baker et al., 2017; Negrinho & Gordon, 2017]

Neural Architecture Search (NAS): has been recently introduced for automatic learning of the model structure for the given dataset/task.

- Computationally feasible NAS approaches:
 - Tree-structured search space
 - *e*-greedy exploration

among search parameters [Pham et al., 2018]

Shown good improvements on image classification and language modeling

Efficient Neural Architecture Search (ENAS): A weight-sharing strategy

[Zoph & Le, 2017; Baker et al., 2017; Negrinho & Gordon, 2017]

Figure: An example of a recurrent cell in our search space with 4 computational nodes. *Left*: The computational DAG that corresponds to the recurrent cell. The red edges represent the flow of information in the graph. *Middle*: The recurrent cell. *Right*: The outputs of the controller RNN that result in the cell in the middle and the DAG on the left. Note that nodes 3 and 4 are never sampled by the RNN, so their results are averaged and are treated as the cell's output.

Figure: The graph represents the entire search space while the red arrows define a model in the search space, which is decided by a controller. Here, node 1 is the input to the model whereas nodes 3 and 6 are the model's outputs.

ENAS for Text Classification

Stage1:

- Controller samples a cell structure and use the task's performance as feedback
- Controller learns \bullet optimal cell structure

ENAS for Text Classification

Stage2:

Retrain the model \bullet using the learned optimal cell structure in stage-1

ENAS for Sequence Generation

Task1 (dataset d_1)

Task2 (dataset d_2)

Task1 (dataset d_1)

Task1 (dataset d_1)

Task2 (dataset d_{γ})

θ_1 are block-sparse in nature

[Scardapane et al., 2017]

Task1 (dataset d_1)

Task2 (dataset d_{γ})

θ_1 are block-sparse in nature

ψ_2 is orthogonal to θ_1

[Bousmalis et al., 2016; Scardapane et al., 2017]

Task1 (dataset d_1)

 $|\theta_{1,k}[i,:]||_2)|_1$ *i*=1

Condition 1: When training the model on dataset d_1 , we constrain the model parameters $\theta_{1,k} \in \mathbb{R}^{m \times n}$ to be sparse, specifically, to be block sparse, i.e., minimize

[Scardapane et al., 2017]

Task1 (dataset d_1)

constant, and update $\psi_{2,k}$ such that: 1. $\psi_{2,k}$ is block sparse, i.e., $\sum_{k=1}^{n} |(||\psi_{2,k}[i, :]||_2)|_1$. i=12. $\theta_{1,k}$ and $\psi_{2,k}$ are orthogonal.

Condition 2: When training the model on dataset d_2 , we start from $\theta_{1,k}$, keep it

[Bousmalis et al., 2016]

Train on Dataset d_2 and initialize the parameters with $heta_1$

Learn parameters $heta_2$ and cell structure dag_2

Apply Condition 2

Figure: Continual architecture search (CAS) approach: green, solid edges (weight parameters) are shared, newly-learned edges are represented with red, dashed edges.

Figure: Continual architecture search (CAS) approach: green, solid edges (weight parameters) are shared, newly-learned edges are represented with red, dashed edges.

Figure: Continual architecture search (CAS) approach: green, solid edges (weight parameters) are shared, newly-learned edges are represented with red, dashed edges.

CAS Evaluation

Figure: Continual architecture search (CAS) approach: green, solid edges (weight parameters) are shared, newly-learned edges are represented with red, dashed edges.

CAS Evaluation

Table: Test results on GLUE tasks for various models: Baseline, ENAS, and CAS (continual architecture search). The CAS results maintain statistical equality across each step.

30

CAS Results on Text Classification

	QNLI	RTE	WNLI
OUS V	WORK		
	69.4	50.1	65.1
)18)	61.1	50.3	65.1
SELIN	IES		
	73.2	52.3	65.1
ch)	74.5	52.9	65.1

Table: Test results on GLUE tasks for various models: Baseline, ENAS, and CAS (continual architecture search). The CAS results maintain statistical equality across each step.

CAS Results on Text Classification

	ONLI	RTE	WNI I
T			
OUS V	WORK		
	69.4	50.1	65.1
)18)	61.1	50.3	65.1
SELIN	IES		
	73.2	52.3	65.1
ch)	74.5	52.9	65.1
RESU	JLTS		
lg)	73.8	N/A	N/A
)	73.6	54.1	N/A
ng)	73.3	54.0	64.4

Table: Test results on GLUE tasks for various models: Baseline, ENAS, and CAS (continual architecture search). The CAS results maintain statistical equality across each step.

32

CAS Results on Text Classification

	QNLI	RTE	WNLI						
OUS WORK									
	69.4	50.1	65.1						
)18)	61.1	50.3	65.1						
SELIN	IES	-							
	73.2	52.3	65.1						
ch)	74.5	52.9	65.1						
RESULTS									
ng)	73.8	N/A	N/A						
g)	73.6	54.1	N/A						
ng)	73.3	54.0	64.4						

Difference is statistically insignificant, hence CAS is maintaining performance sequentially

Models	MSR-VTT					MSVD					
WIUUCIS	С	В	R	Μ	AVG	С	В	R	Μ	AVG	
Baseline (Pasunuru and Bansal, 2017b)	48.2	40.8	60.7	28.1	44.5	85.8	52.5	71.2	35.0	61.1	
ENAS	48.9	41.3	61.2	28.1	44.9	87.2	52.9	71.7	35.2	61.8	
CAS Step-1 (MSR-VTT training)	48.9	41.1	60.5	27.5	44.5	N/A	N/A	N/A	N/A	N/A	
CAS Step-2 (MSVD training)		40.1	59.9	27.1	43.9	88.1	52.4	71.3	35.1	61.7	

Table: Video captioning results with Baseline, ENAS, and CAS.

[Chen & Dolan, 2011; Xu et al., 2016]

Models	MSR-VTT					MSVD					
WIUUEIS		В	R	М	AVG	С	В	R	Μ	AVG	
Baseline (Pasunuru and Bansal, 2017b)	48.2	40.8	60.7	28.1	44.5	85.8	52.5	71.2	35.0	61.1	
ENAS	48.9	41.3	61.2	28.1	44.9	87.2	52.9	71.7	35.2	61.8	
CAS Step-1 (MSR-VTT training)	48.9	41.1	60.5	27.5	44.5	N/A	N/A	N/A	N/A	N/A	
CAS Step-2 (MSVD training)	48.4	40.1	59.9	27.1	43.9	88.1	52.4	71.3	35.1	61.7	

Table: Video captioning results with Baseline, ENAS, and CAS.

Figure: Learned cell structures for step-1, step-2, and step-3 of continual architecture search for GLUE tasks.

CAS Learned Cells

Figure: Learned cell structures for step-1, step-2, and step-3 of continual architecture search for GLUE tasks.

R. Pasunuru & M. Bansal

CAS Learned Cells

Figure: Learned cell structures for step-1, step-2, and step-3 of continual architecture search for GLUE tasks.

R. Pasunuru & M. Bansal

CAS Learned Cells

Generalizable Cell on Multiple Tasks

- across multiple datasets

Architectures found by NAS are dataset dependent

Human designed cell (e.g., LSTM and GRU) work well

- across multiple datasets

Architectures found by NAS are dataset dependent

Human designed cell (e.g., LSTM and GRU) work well

Can we learn generalizable NAS cell structures?

Generalizable Cell on Multiple Tasks

- across multiple datasets

Architectures found by NAS are dataset dependent

Human designed cell (e.g., LSTM and GRU) work well

Can we learn generalizable NAS cell structures?

Multi-Task Learning!!

Figure: Multi-task cell structure learning using joint rewards from n datasets.

Controller

Shared Model

Multi-Task Architecture Search (MAS)

Figure: Multi-task cell structure learning using joint rewards from n datasets.

Multi-Task Architecture Search (MAS)

Figure: Multi-task cell structure learning using joint rewards from n datasets.

Multi-Task Architecture Search (MAS)

Figure: Multi-task cell structure learning using joint rewards from n datasets.

MAS Results on Text Classification

using QNLI and WNLI dataset

(a) MAS cell

Figure: Learned Multi-task and RTE cell Structures.

MAS Learned Cells

Figure: Learned Multi-task and RTE cell Structures.

MAS Learned Cells

Ramkanth Pasunuru Mohit Bansal

www.rama-kanth.com

Acknowledgements: We thank the reviewers for their helpful comments. This work was supported by DARPA (YFA17-D17AP00022), and faculty awards from Google, Facebook, and Salesforce.

www.cs.unc.edu/~mbansal/

Code: <u>https://github.com/ramakanth-pasunuru/CAS-MAS</u>