Multi-Task Video Captioning with Video and Entailment Generation

Ramakanth Pasunuru & Mohit Bansal

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Video Captioning Task

Ground truth: A woman is slicing a red pepper.

Ground truth: A group of boys are fighting.

- Assistance to visually impaired
- Improving online video search
- Grounded robotic instruction tasks

[Kojima et al., 2002; Lee et al., 2008; Khan and Gotoh, 2012; Barbu et al., 2012; Das et al., 2013; Rohrbach et al., 2013; Yu and Siskind, 2013; Venugopalan et al., 2014, 2015, 2016]

Video Captioning Task

Ground truth: A woman is slicing a red pepper. SotA Baseline: A woman is slicing a carrot.

Ground truth: A group of boys are fighting.SotA Baseline: A group of men are dancing.

Video Captioning Task

Ground truth: A woman is slicing a red pepper.SotA Baseline: A woman is slicing a carrot.Our model: A woman is slicing a pepper.

Ground truth: A group of boys are fighting.SotA Baseline: A group of men are dancing.Our model: Two men are fighting.

- Paradigm to improve generalization performance of a task using related tasks.
- The multiple tasks are learned in parallel (alternating optimization minibatches) while using shared model representations/parameters.
- Each task benefits from extra information in the training signals of related tasks.
- Luong et al., 2016 presented multi-task learning for sequence-to-sequence models, with shared encoder or decoder representations.

Multi-Task for Video Captioning

- Video Captioning Challenges:
 - Lack of sufficient labeled data
 - Spatial-visual modeling
 - Logical storyline dynamics
 - Temporal across-frame dynamics

Ground truth: A person is mixing powdered ingradients with water. A woman is mixing flour and water in a bowl.Our model: A woman is mixing ingredients in a bowl.

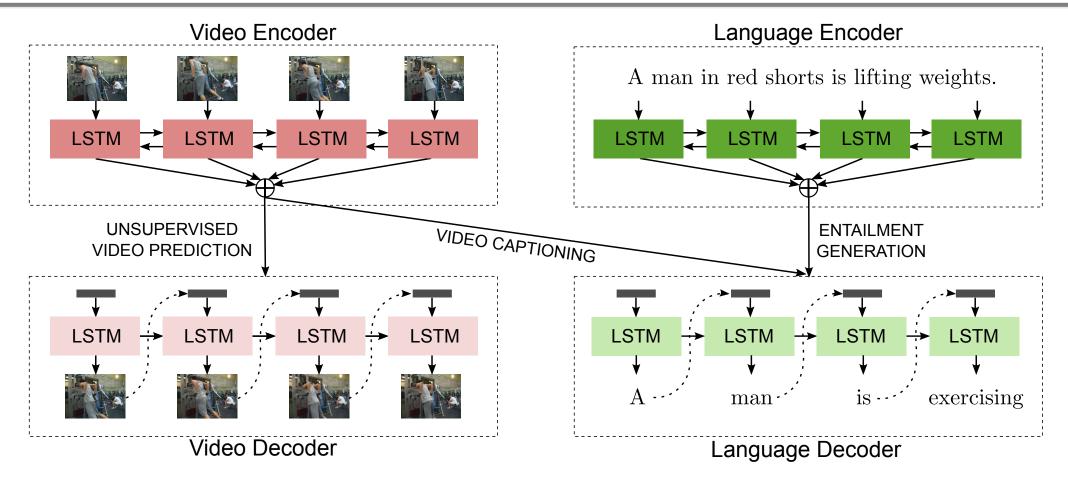
- We share knowledge w/ 2 related directed-generation tasks (textual+visual):
 - 1. Premise-to-Entailment Generation

(to help learn better caption decoder representations, since caption is also entailed by video)

2. Video-to-Video Generation (Unsupervised)

(to help learn richer video encoder representations, aware of temporal action context)

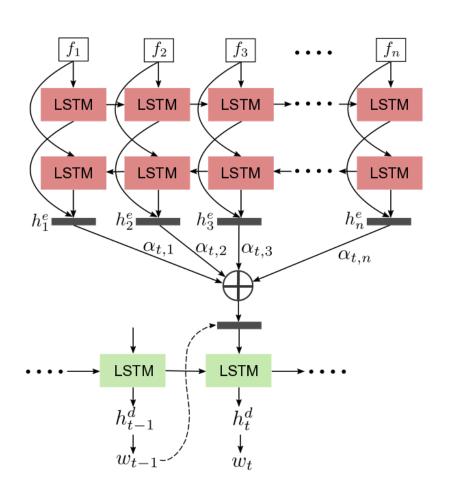
M-to-M Multi-Task for Video Captioning



• Training in alternate mini-batches: mixing ratio = $\frac{\alpha_v}{(\alpha_v + \alpha_f + \alpha_e)}$: $\frac{\alpha_f}{(\alpha_v + \alpha_f + \alpha_e)}$: $\frac{\alpha_e}{(\alpha_v + \alpha_f + \alpha_e)}$

Baseline Video Captioning Model

- Sequence-to-sequence encoderdecoder model
- Attention-based (Bahdanau et al., 2015)
- State-of-the-art Inception-v4 image frame features
- Strong baseline (>= previous work)

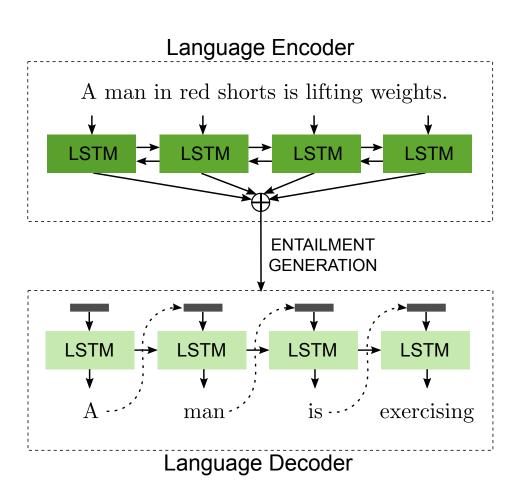


Textual Entailment

- Directional, logical-implication relation between two sentences:
 - Premise: A girl is jumping on skateboard in the middle of a red bridge.
 - Entailment: The girl does a skateboarding trick.
 - Contradiction: The girl skates down the sidewalk.
 - Neutral: The girl is wearing safety equipment.
 - **Premise**: *A blond woman is drinking from a public fountain.*
 - Entailment: *The woman is drinking water.*
 - Contradiction: The woman is drinking coffee.
 - Neutral: *The woman is very thirsty.*
- Can we use entailment as linguistic inference to help related directed/conditioned generation tasks? (Yes, for e.g. video captioning or document summarization)
- Large-scale SNLI corpus allows training accurate classification and RNN-style generation models

Entailment Generation Model

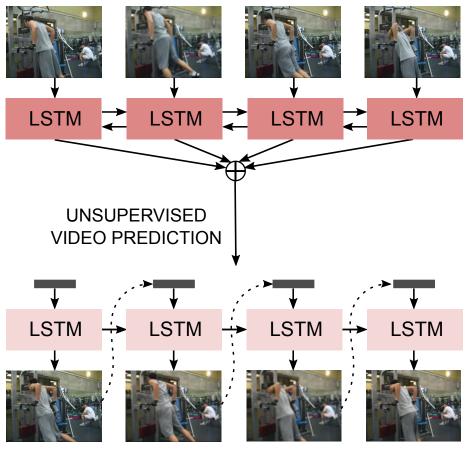
- Helps learn better video-entailing caption decoder representations
- Since caption needs to be entailed by visual premise of video (i.e., describes subsets of objects/events logically implied by full video content), we teach it about entailment via MTL.
- Better than simply fusing an external LM to decoder (premise-to-entailment task matches logically-directed video-to-caption task better).



Unsupervised Video Prediction

- Helps learn richer video encoder representations that are aware of temporal context and action sequence/completion
- Robust to missing frames and varying frame lengths or motion speeds
- 80:20% frame division between encoder and decoder
- UCF-101 action videos dataset

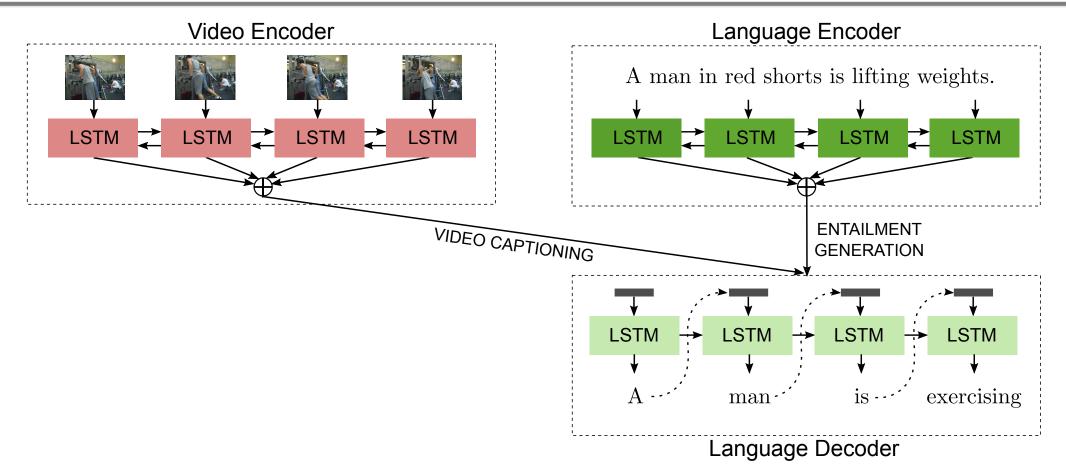
Video Encoder



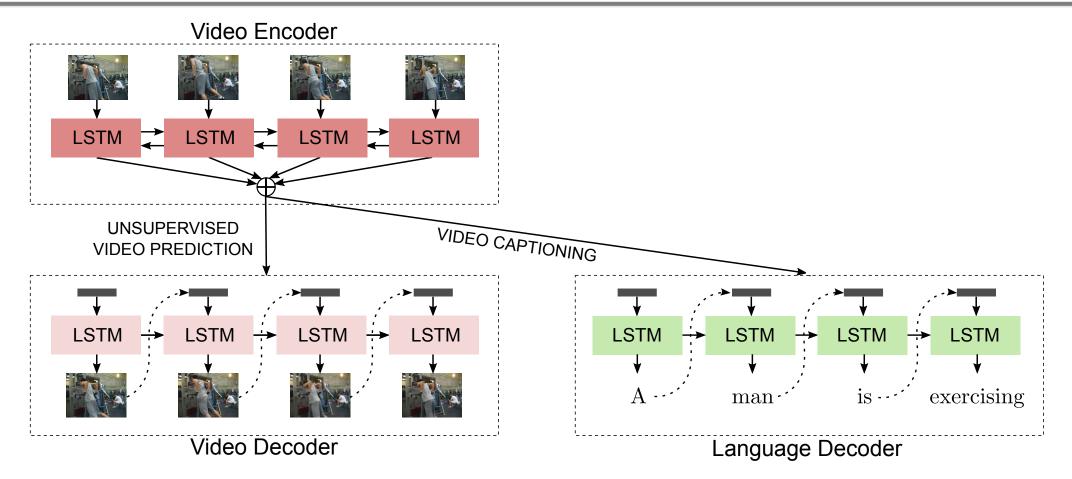
Video Decoder

[Srivastava et al., 2015]

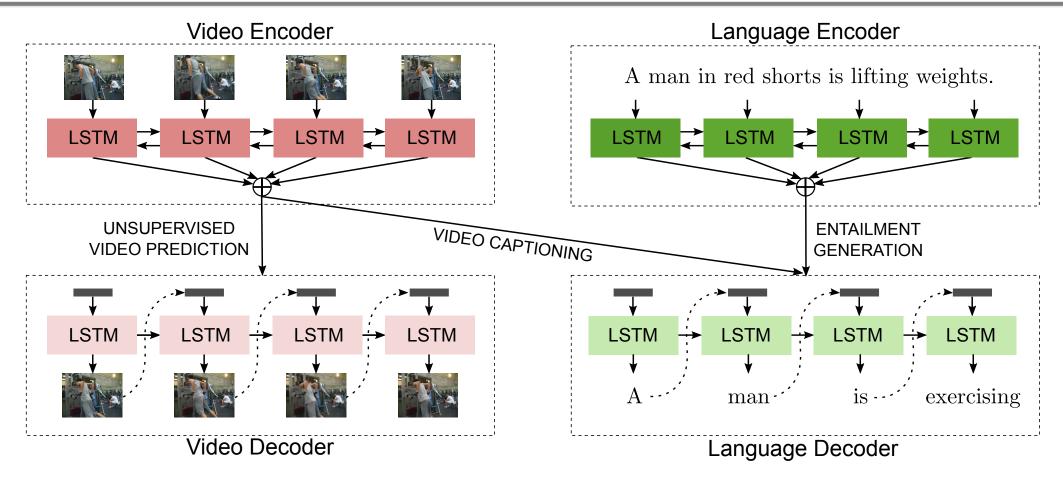
M-to-1 Multi-Task Model



1-to-M Multi-Task Model



M-to-M Multi-Task Model



• Training in alternate mini-batches: mixing ratio = $\frac{\alpha_v}{(\alpha_v + \alpha_f + \alpha_e)}$: $\frac{\alpha_f}{(\alpha_v + \alpha_f + \alpha_e)}$: $\frac{\alpha_e}{(\alpha_v + \alpha_f + \alpha_e)}$

Results (YouTube2Text/MSVD)

Models	METEOR	CIDEr-D	ROUGE-L	BLEU-4
Previous W	ORK			
LSTM-YT (Venugopalan et al., 2015b)	26.9	-	-	31.2
S2VT (Venugopalan et al., 2015a)	29.8	-	-	-
Temporal Attention (Yao et al., 2015)	29.6	51.7	-	41.9
LSTM-E (Pan et al., $2016b$)	31.0	-	-	45.3
Glove + DeepFusion (Venugopalan et al., 2016)	31.4	-	-	42.1
p-RNN (Yu et al., 2016)	32.6	65.8	-	49.9
HNRE + Attention (Pan et al., 2016a)	33.9	_	-	46.7

Results (YouTube2Text)

Models	METEOR	CIDEr-D	ROUGE-L	BLEU-4	
Previous Work					
LSTM-YT (Venugopalan et al., 2015b)	26.9	-	-	31.2	
S2VT (Venugopalan et al., $2015a$)	29.8	-	-	-	
Temporal Attention (Yao et al., 2015)	29.6	51.7	-	41.9	
LSTM-E (Pan et al., $2016b$)	31.0	-	-	45.3	
Glove + DeepFusion (Venugopalan et al., 2016)	31.4	-	-	42.1	
p-RNN (Yu et al., 2016)	32.6	65.8	-	49.9	
HNRE + Attention (Pan et al., 2016a)	33.9	-	-	46.7	
Our Baselin	IES				
Baseline (V)	31.4	63.9	68.0	43.6	
Baseline (G)	31.7	64.8	68.6	44.1	
Baseline (I)	33.3	75.6	69.7	46.3	
Baseline + Attention (V)	32.6	72.2	69.0	47.5	
Baseline + Attention (G)	33.0	69.4	68.3	44.9	
Baseline + Attention (I)	33.8	77.2	70.3	49.9	
Baseline + Attention (I) (E) \otimes	35.0	84.4	71.5	52.6	

Results (YouTube2Text)

Models	METEOR	CIDEr-D	ROUGE-L	BLEU-4	
Previous Work					
LSTM-YT (Venugopalan et al., 2015b)	26.9	-	-	31.2	
S2VT (Venugopalan et al., $2015a$)	29.8	-	-	-	
Temporal Attention (Yao et al., 2015)	29.6	51.7	-	41.9	
LSTM-E (Pan et al., $2016b$)	31.0	-	-	45.3	
Glove + DeepFusion (Venugopalan et al., 2016)	31.4	-	-	42.1	
p-RNN (Yu et al., 2016)	32.6	65.8	-	49.9	
HNRE + Attention (Pan et al., 2016a)	33.9	-	-	46.7	
OUR BASELINES					
Baseline (V)	31.4	63.9	68.0	43.6	
Baseline (G)	31.7	64.8	68.6	44.1	
Baseline (I)	33.3	75.6	69.7	46.3	
Baseline + Attention (V)	32.6	72.2	69.0	47.5	
Baseline + Attention (G)	33.0	69.4	68.3	44.9	
Baseline $+$ Attention (I)	33.8	77.2	70.3	49.9	
Baseline + Attention (I) (E) \otimes	35.0	84.4	71.5	52.6	
Our Multi-Task Learning Models					
\otimes + Video Prediction (1-to-M)	35.6	88.1	72.9	54.1	
\otimes + Entailment Generation (M-to-1)	35.9	88.0	72.7	54.4	
\otimes + Video Prediction + Entailment Gener (M-to-M)	36.0	92.4	72.8	54.5	

* All models (1-to-M, M-to-1 and M-to-M) stat. signif. better than strong SotA baseline.

Results (MSR-VTT)

• Diverse video clips from a commercial video search engine

Models	METEOR	CIDEr-D	ROUGE-L	BLEU-4
Venugopalan et al., 2015	23.4	-	-	32.3
Yao et al., 2015	25.2	-	-	35.2
Xu et al., 2016	25.9	-	-	36.6
Rank1: v2t_navigator	28.2	44.8	60.9	40.8
Rank2: Aalto	26.9	45.7	59.8	39.8
Rank3: VideoLAB	27.7	44.1	60.6	39.1
Our Model (New Rank1)	28.8	47.1	60.2	40.8

Results (MVAD)

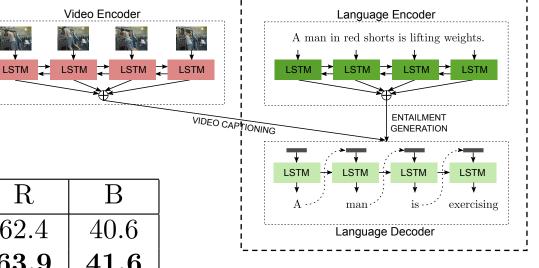
• Movie video clips (1-2 human references so only METEOR feasible)

Models	METEOR
Yao et al., 2015	5.7
Venugopalan et al., 2015	6.7
Pan et al., 2016	6.8
Our M-to-M Multi-Task Model	7.4

Results (Entailment Generation)

Video captioning mutually also helps improve the entailment-generation task in turn (w/ statistical significance)

Models	M	С	R	В
Entailment Generation	29.6	117.8	62.4	40.6
+Video Caption $(M-to-1)$	30.0	121.6	63.9	41.6



 New multi-reference split setup of SNLI to allow automatic metric evaluation and a zero train-test premise overlap

Human Evaluation

- Pilot human evaluations on 300-sized samples
- Multi-task model > strong non- multitask baseline on relevance and coherence/fluency (for both video captioning and entailment generation)

	YouTube2Text		
	Relev.	Coher.	
Not Distinguish.	70.7%	92.6%	
SotA Baseline Wins	12.3%	1.7%	
Multi-Task Wins	17.0%	5.7%	

Human Evaluation

- Pilot human evaluations on 300-sized samples
- Multi-task model > strong non- multitask baseline on relevance and coherence/fluency (for both video captioning and entailment generation)

	YouTube2Text		YouTube2Text Entail		lment
	Relev.	Coher.	Relev.	Coher.	
Not Distinguish.	70.7%	92.6%	84.6%	98.3%	
SotA Baseline Wins	12.3%	1.7%	6.7%	0.7%	
Multi-Task Wins	17.0%	5.7%	8.7%	1.0%	

Analysis Examples

Ground truth: Two women are shopping in a store. Two girls are shopping.
Baseline model: A man is doing a monkey in a store.
Multi-task model: A woman is shopping in a store.

Ground truth: Two men are fighting. A group of boys are fighting.
Baseline model: A group of men are dancing.
Multi-task model: Two men are fighting.

(a) complex examples where the multi-task model performs better than baseline

Analysis Examples

Ground truth: A woman slices a shrimp tail. A girl is cutting a fish tale.
Baseline model: A person is cutting the something.
Multi-task model: A woman is cutting a piece of meat. Ground truth: Two men are talking aggressively. The boy is talking.
Baseline model: A man is crying.
Multi-task model: A man is talking.

(b) ambiguous examples (i.e., ground truth itself confusing) where multi-task model still correctly predicts one of the possible categories

Analysis Examples

Ground truth: A monkey and a deer are fighting. A gazelle is fighting with a baboon.Baseline model: A man is walking on the ground.Multi-task model: A monkey is walking.

Ground truth: A dog climbs into a dryer. A dog is in a washing machine.
Baseline model: A man is playing.
Multi-task model: A man is playing with a toy.

(c) complex examples where both models perform poorly

(d) baseline > MTL: both correct but low specificity

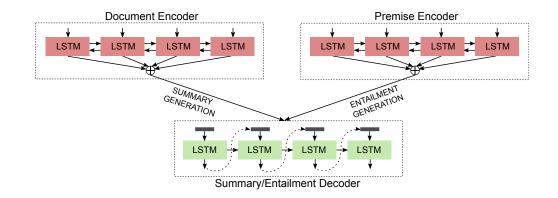
• Overall, multi-task model's captions are better at both temporal action prediction and logical entailment w.r.t. ground truth captions (ablated examples in paper).

Given Premise	Generated Entailment
a child that is dressed as spiderman is ringing the doorbell	a child is dressed as a superhero
a girl in cargo pants and a green shirt jumps in front of a	a girl is jumping
square stone	
a man in a red jacket rides a horse in mountainous terrain	a man is riding a horse
a woman in a dress with two children	a woman is wearing a dress
woman in a red headscarf covering her face	a woman is wearing a red scarf

Extensions and New Work

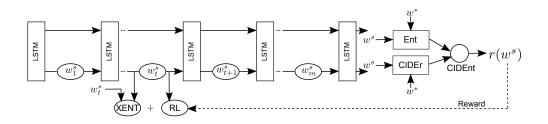
 Multitask Summarization with Entailment [EMNLP'17 – NewSumm]

(A summary of a document is entailed by it)



• Entailment as reward in RL [EMNLP'17]

(Corrects matching-based metrics to ensure logically-directed match and avoid contradiction)



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Thanks!